知为奇数时. ---10′ 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

有一种新型的奇强洗衣液,特点是去污速度快.已知每投放,且个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.

(1)若只投放一次个单位的洗衣液,2分钟时水中洗衣液的浓度为3(克/升),求的值?

(2)若只投放一次4个单位的洗衣液,则有效去污时间可达几分钟?

(3)若第一次投放2个单位的洗衣液,10分钟后再投放1个单位的洗衣液,在第12分

钟时洗衣液是否还能起到有效去污的作用?能,请加以证明;不能,请说明理由.

查看答案和解析>>

已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根据表中数据,研究该函数的一些性质:
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在[0.55,0.6]上是否存在零点,并说明理由.

查看答案和解析>>

已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(Ⅰ)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前n项和Tn
(Ⅱ)若数列{cn}满足cn=a2n,试判断cn是否为等比数列,并说明理由;
(Ⅲ)当p=
1
2
时,问是否存在n∈N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,请说明理由.

查看答案和解析>>

已知数列{an}满足a1=2,前n项和为Snan+1=
pan+n-1(n为奇数)
-an-2n(n为偶数)

(Ⅰ)若数列{bn}满足bn=a2n+a2n+1(n≥1),试求数列{bn}前n项和Tn
(Ⅱ)若数列{cn}满足cn=a2n,试判断cn是否为等比数列,并说明理由;
(Ⅲ)当p=
1
2
时,问是否存在n∈N*,使得(S2n+1-10)c2n=1,若存在,求出所有的n的值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分10分)已知函数

(1)求函数的最小正周期及当为何值时有最大值;

(2)令,判断函数的奇偶性,并说明理由.

 

查看答案和解析>>


同步练习册答案