[解]∵的右焦点 查看更多

 

题目列表(包括答案和解析)

已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于

            B       C     D      

【解析】C正确.

 

查看答案和解析>>

椭圆的左、右焦点分别为,一条直线经过点与椭圆交于两点.

⑴求的周长;

⑵若的倾斜角为,求的面积.

【解析】(1)根据椭圆的定义的周长等于4a.

(2)设,则,然后直线l的方程与椭圆方程联立,消去x,利用韦达定理可求出所求三角形的面积.

 

查看答案和解析>>

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

【解析】解:因为第一问中,利用椭圆的性质由   所以椭圆方程可设为:,然后利用

    

      椭圆方程为

第二问中,当为钝角时,,    得

所以    得

解:(Ⅰ)由   所以椭圆方程可设为:

                                       3分

    

      椭圆方程为             3分

(Ⅱ)当为钝角时,,    得   3分

所以    得

 

查看答案和解析>>

是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为(       )

                                          

【解析】因为是底角为的等腰三角形,则有,,因为,所以,,所以,即,所以,即,所以椭圆的离心率为,选C.

 

查看答案和解析>>

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率。过F1的直线交椭圆于A、B两点,且△ABF2的周长为8

(Ⅰ)求椭圆E的方程。

(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q。试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由

【解析】

 

查看答案和解析>>


同步练习册答案