的条件下.当时.证明不等式.参 考 答 案 查看更多

 

题目列表(包括答案和解析)

(08年永定一中二模理)(14分)

直线过点P斜率为,与直线交于点A,与轴交于点B,点A,B的横坐标分别为,记.

(1)求的解析式;

(2)设数列满足,求数列的通项公式;

(3)在(2)的条件下,当时,证明不等式:.

查看答案和解析>>

(本题满分12分)已知二次函数满足条件:①的两个零点;②的最小值为
(1)求函数的解析式;
(2)设数列的前项积为,且 ,,求数列的前项和
(3)在(2)的条件下,当时,若的等差中项,试问数列
第几项的值最小?并求出这个最小值。

查看答案和解析>>

已知函数为奇函数,且处取得极大值2.(1)求函数的解析式;

( 2)记,求函数的单调区间;

(3)在(2)的条件下,当时,若函数的图像的直线的下方,求的取值范围。

 

查看答案和解析>>

(16分)已知函数).

(1)若时,判断函数上的单调性,并说明理由;[来源:]

(2)若对于定义域内一切恒成立,求实数的值;

(3)在(2)的条件下,当时,的取值恰为,求实数的值.

 

查看答案和解析>>

是定义在上的函数,当,且时,有

(1)证明是奇函数;

(2)当时,(a为实数). 则当时,求的解析式;

(3)在(2)的条件下,当时,试判断上的单调性,并证明你的结论.

 

查看答案和解析>>


同步练习册答案