3.标准正态曲线 标准正态曲线N(0.1)是一种特殊的正态分布曲线.它是本小节的重点.由于它具有非常重要的地位.已专门制作了“标准正态分布表 .对于抽像函数.课本中没有给出具体的表达式.但其几何意义非常明显.即由正态曲线N(0.1).x轴.直线所围成的图形的面积.再由N(0.1)的曲线关于y轴对称.可以得出等式.以及标准正态总体在任一区间(a.b)内取值概率. 查看更多

 

题目列表(包括答案和解析)

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=Φ(
x0σ
)

某中学高考数学成绩近似地服从正态分布N(100,100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

查看答案和解析>>

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=.

某中学高考数学成绩近似地服从正态分布N(100, 100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

 

查看答案和解析>>

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=数学公式
某中学高考数学成绩近似地服从正态分布N(100,100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

查看答案和解析>>

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=Φ(
x0
σ
)

某中学高考数学成绩近似地服从正态分布N(100,100),求此校数学成绩在120分以上的考生占总人数的百分比.(Φ(2)≈0.977)

查看答案和解析>>

在标准正态分布中我们常设P(X<x0)=Φ(x0),根据标准正态曲线的对称性有性质:P(X>x0)=1-Φ(x0).若X~N(μ,σ2),记P(X<x0)=F(x0)=Φ().

某市有280名高一学生参加计算机操作比赛,等级分为10分,随机调阅了60名学生的成绩,见下表:

成绩(分)

1

2

3

4

5

6

7

8

9

10

人数(个)

0

0

0

6

15

21

12

3

3

0

(1)求样本的平均成绩和标准差;

(2)若总体服从正态分布,求正态曲线的近似方程(提示:μ,σ分别可用样本的均值和标准差估计);

(3)若规定比赛成绩在7分或7分以上的学生参加省级比赛,试估计有多少学生可以进入省级比赛?(参考数值:φ(0.82)=0.793 9)

查看答案和解析>>


同步练习册答案