查看更多

 

题目列表(包括答案和解析)

(本小题满分8分)已知函数   ,其中

(1)若曲线在点处的切线方程为,求函数的解析式

(2)讨论函数的单调性

查看答案和解析>>

(本小题满分8分)在数列中,

(1)求

2)求数列的前n项和.

查看答案和解析>>

(本小题满分8分)
已知全集U=,集合A={,集合B=
求:(1)        (2)

查看答案和解析>>

(本小题满分8分)
设全集U="{1," 2, 3, 4, 5}, 集合A="{1," a2-1, 4}, ="{2," a+3}
(I)求a值;
(II)满足AÍBU这样的集合B共有几个?试将这样的B集合都写出来

查看答案和解析>>

(本小题满分8分)
某交易市场的土豆在30天内每吨的交易价(千元)与时间(天)(),组成有序数对,点落在如图所示的两条线段上,该市场土豆在30天内的日交易量 (吨)与时间(天)的部分数据如下表所示


4
10
16
22
(吨)
36
30
24
18

(1)根据提供的图象,写出每吨交易价格(千元)与时间(天)所满足函数关系式;
(2)根据表中数据确定日交易量(吨)与时间(天)的一次函数解析式;
(3)用表示日交易额(千元),写出关于的函数解析式,问这30天中第几天交易额最大,最大值多少?

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

选项

A

B

B

D

B

D

C

A

B

C

A

D

二、填空题

13、(-¥,-1)È(2,+¥)  14 、2n ? 1   15、45  16、 17、0.94  18、

三、解答题

19、解: 设等比数列{an}的公比为q, 则q≠0, a2= = , a4=a3q=2q

所以 + 2q= , 解得q1= , q2= 3,

当q1=, a1=18.所以 an=18×()n-1= = 2×33-n

当q=3时, a1= , 所以an=×3n-1=2×3n-3

20、解:(1)将函数解析式变形为

   (2)方程f(x)=5的解分别是                和 ,      由于f(x)在(-∞,-1]和[2,5]上单调递减,在[-1,2]和[5,+∞)上单调递增,因此

.   

由于

21、:(1)当a=2时,A=(2,7),B=(4,5)∴ AB=(4,5)

(2)∵ B=(2a,a2+1),

当a<时,A=(3a+1,2)要使BA,必须,此时a=-1;

当a=时,A=,使BA的a不存在;

当a>时,A=(2,3a+1)要使BA,必须,此时1≤a≤3.

综上可知,使BA的实数a的取值范围为[1,3]∪{-1}

22、解:(Ⅰ)求导得

            由于 的图像与直线相切于点

            所以,即:

                  1-3a+3b = -11        解得:

                  3-6a+3b=-12

(Ⅱ)得:

     令f′x)>0,解得 x-1x3;又令f′x)< 0,解得 -1x3.

故当x, -1)时,f(x)是增函数,当 x3,)时,f(x)也是增函数,

但当x-1 3)时,f(x)是减函数.

 


同步练习册答案