(1)若函数确定数列的自反数列为.求的通项公式, 查看更多

 

题目列表(包括答案和解析)

由函数确定数列,函数的反函数能确定数列,若对于任意,都有,则称数列是数列的“自反数列”。

(1)若函数确定数列的自反数列为,求的通项公式;

(2)在(1)条件下,记为正数数列的调和平均数,若

为数列的前项和,为数列的调和平均数,求

(3)已知正数数列的前项之和。求的表达式。

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f-1(x)能确定数列bn,bn=f-1(n)若对于任意n∈N*都有bn=an,则称数列{bn}是数列{an}的“自反函数列”
(1)设函数f(x)=
px+1
x+1
,若由函数f(x)确定的数列{an}的自反数列为{bn},求an
(2)已知正整数列{cn}的前项和sn=
1
2
(cn+
n
cn
).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=
-1
anSn2
,Dn是数列{dn}的前n项和,且Dn>loga(1-2a)恒成立,求a的取值范围.

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y="f" -1(x)能确定数列{bn},bn=" f" –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.
(1)若函数f(x)=确定数列{an}的自反数列为{bn},求an
(2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;
(3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

查看答案和解析>>

由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f -1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;

   (3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

 

查看答案和解析>>

       由函数y=f(x)确定数列{an},an=f(n),函数y=f(x)的反函数y=f -1(x)能确定数列{bn},bn= f –1(n),若对于任意nÎN*,都有bn=an,则称数列{bn}是数列{an}的“自反数列”.

   (1)若函数f(x)=确定数列{an}的自反数列为{bn},求an

   (2)已知正数数列{cn}的前n项之和Sn=(cn+).写出Sn表达式,并证明你的结论;

   (3)在(1)和(2)的条件下,d1=2,当n≥2时,设dn=,Dn是数列{dn}的前n项之和,且Dn>log a (1-2a)恒成立,求a的取值范围.

参考答案

查看答案和解析>>

1.      2.     3.    4.   5.    6.(文)(理)

7.     8. 4        9.(文)(理)1     10.      11.

12-15. C  A  A  B

16. (1).   

(2)取的中点,所求的角的大小等于的大小,

,所以与底面所成的角的大小是

17. (1)由函数的图像与x轴的任意两个相邻交点间的距离为得函数周期为,

      直线是函数图像的一条对称轴,

  ,, , .      .  

  (2) 

  ,

即函数的单调递增区间为

18. (1)第天销售的件数为

4月30日的销售件数为

则:

解得,即4月12日的销售量最大,其最大值为25×12-15=285(件)

(2)时,,即未流行

时,

即从4月13日起,社会开始流行.

时,,令,解得

即从4月22日起,社会上流行消失,故流行的时间只有9天.

19. (1)

(2)       妨设在第一象限,则

(3)若直线斜率存在,设为,代入

若平行四边形为矩形,则

无解

若直线垂直轴,则不满足.

故不存在直线,使为矩形.

20. 解:(1)由题意的:f ?1(x)== f(x)=,所以p = ?1,所以an=翰林汇

(2) an=,dn==n,

Sn为数列{dn}的前n项和,Sn=,又Hn为数列{Sn}的调和平均数,

Hn===   ==

(3)因为正数数列{cn}的前n项之和Tn=(cn+),

所以c1=(c1+),解之得:c1=1,T1=1

当n≥2时,cn = Tn?Tn?1,所以2Tn = Tn?Tn?1 +

Tn +Tn?1 = ,即:= n,

所以,= n?1,= n?2,……,=2,累加得:

=2+3+4+……+ n,      =1+2+3+4+……+ n =,Tn=

 


同步练习册答案