题目列表(包括答案和解析)
如图所示,质量均为m的物体A、B分别与轻质弹簧的两端相连接,静止在水平地面上。质量也为m的小物体C从距A物体h高处由静止开始下落,C与A相碰后立即粘在一起向下运动,以后不再分开,当A和C运动到最高点时,物体B对地面刚好无压力。不计空气阻力,弹簧始终处于弹性限度内,重力加速度为g。求
![]()
1.A和C一起开始向下运动时的速度大小;
2.A和C运动到最高点时的加速度大小;
3.弹簧的劲度系数k。
在探究某种笔的弹跳问题时,建立以下简化模型进行研究。
把笔分为轻质弹簧、圆筒和直杆三部分,薄挡板P固定在直杆上,轻质弹簧的两端分别固定在圆筒顶部和薄挡板P上,质量为M的圆筒可沿直杆无摩擦滑动,直杆和挡板P的总质量为m。开始时将笔直立于水平桌面,在桌面上方的矩形区域内有竖直向上的匀强电场,带正电的挡板P非常靠近电场的上边界,挡板P与周围物体绝缘接触,受到的电场力与笔的重力大小相等。向上移动圆筒使弹簧处于原长状态,此时挡板P刚好与圆筒底部接触,如图甲所示。现用力缓慢向下压圆筒,使圆筒底部恰好与水平桌面接触,此过程中压力做功为W,如图乙所示。撤除压力,圆筒弹起并与挡板P碰撞,两者一起上升到最大高度后自由落下,此后直杆在桌面上多次跳动。
假设圆筒与挡板P每次碰撞结束时均具有相同速度,碰撞时间均忽略不计。直杆与桌面每次碰撞后均不反弹,直杆始终保持竖直状态。不计一切摩擦与空气阻力,重力加速度大小为g,求:
(1)直杆第一次上升的最大高度h1;
(2)直杆运动的总路程h。
![]()
| A.带电粒子在加速器中第1次和第2次做曲线运动的时间分别为t1和t2,则t1:t2=1:2 | ||
B.带电粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比r1:r2=
| ||
C.两D形盒狭缝间的交变电场的周期T=
| ||
D.带电粒子离开回旋加速器时获得的动能为
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com