21.已知双曲线C:(a>0.b>0).B是右顶点.F是右焦点.点A在x轴正半轴上.且满足..成等比数列.过F作双曲线C在第一.第三象限的渐近线的垂线l.垂足为P. 查看更多

 

题目列表(包括答案和解析)

已知双曲线C:数学公式(a>0,b>0)的离心率为数学公式,且过点(4,3).
(1)求双曲线C的标准方程和焦点坐标;
(2)已知点P在双曲线C上,且∠F1PF2=90°,求点P到x轴的距离.

查看答案和解析>>

已知双曲线C:数学公式(a>0,b>0)的右准线与一条渐近线交于点M,F是右焦点,若|MF|=1,且双曲线C的离心率数学公式
(1)求双曲线C的方程;
(2)过点A(0,1)的直线l与双曲线C的右支交于不同两点P、Q,且P在A、Q之间,若数学公式数学公式,求直线l斜率k的取值范围.

查看答案和解析>>

已知双曲线C:数学公式(a>0,b>0)
(1)若a=4,b=3,过点P(6,3)的动直线l与双曲线C相交与不同两点A,B时,在线段AB上取点Q,满足数学公式,求证点Q总在某定直线上.
(2)在双曲线C:数学公式(a>0,b>0),过双曲线外一点P(m,n)的动直线l与双曲线C相交与不同两点A,B时,在线段AB上取点Q,满足数学公式,则点Q在哪条定直线上?
(3)试将该结论推广至其它圆锥曲线上,证明其中的一种情况,并猜想该直线具有的性质.

查看答案和解析>>

已知双曲线C:(a>0,b>0)的离心率为,右准线方程为
(1)求双曲线C的方程;
(2)设直线l是圆O:x2+y2=2上动点P(x0,y0)(x0y0≠0)处的切线,l与双曲线C交于不同的两点A、B,证明∠AOB的大小为定值。

查看答案和解析>>

已知双曲线C:(a>0,b>0),F1、F2分别为C 的左、右焦点。P为C右支上一点,且使∠F1PF2=,又 △F1PF2的面积为
(1)求C的离心率e;
(2)设A为C的左顶点。Q为第一象限内C上的任意一点,问是否存在常数λ(λ>0),使得∠QF2A= λ∠QAF2恒成立。若存在,求出λ的值;若不存在,请说明理由。

查看答案和解析>>

1.(文)A(理)C 2.(文)A(理)B 3.C 4.(文)D(理)B 

5.(文)D (理)C 6.A 7.C 8.B 9.A 10.D 11.A 12.C 

13.33 14.7 15.18

  16.只要写出-4c2ccc≠0)中一组即可,如-4,2,1等

  17.解析:

              

              

  18.解析:(1)由成等差数列,得

  若q=1,则

  由≠0 得 ,与题意不符,所以q≠1.

  由,得

  整理,得,由q≠0,1,得

  (2)由(1)知:

  ,所以成等差数列.

  19.解析:(1)记“摸出两个球,两球恰好颜色不同”为A,摸出两个球共有方法种,

  其中,两球一白一黑有种.

  ∴ 

  (2)法一:记摸出一球,放回后再摸出一个球“两球恰好颜色不同”为B,摸出一球得白球的概率为,摸出一球得黑球的概率为

  ∴ PB)=0.4×0.6+0.6+×0.4=0.48

  法二:“有放回摸两次,颜色不同”指“先白再黑”或“先黑再白”.

  ∴ 

  ∴ “有放回摸两次,颜色不同”的概率为

  20.解析:(甲)(1)∵ △为以点M为直角顶点的等腰直角三角形,∴ 

  ∵ 正三棱柱, ∴ 底面ABC

  ∴ 在底面内的射影为CMAMCM

  ∵ 底面ABC为边长为a的正三角形, ∴ 点MBC边的中点.

  (2)过点CCH,由(1)知AMAMCM

  ∴ AM⊥平面 ∵ CH在平面内, ∴ CHAM

  ∴ CH⊥平面,由(1)知,

  ∴ . ∴ 

  ∴ 点C到平面的距离为底面边长为

  (3)过点CCII,连HI, ∵ CH⊥平面

  ∴ HICI在平面内的射影,

  ∴ HI,∠CIH是二面角的平面角.

  在直角三角形中,

  ∴ ∠CIH=45°, ∴ 二面角的大小为45°

  (乙)解:(1)以B为原点,建立如图所示的空间直角坐标系.

  ∵ AC2a,∠ABC=90°,

  ∴ 

  ∴ B(0,0,0),C(0,,0),A,0,0),

  ,0,3a),(0,3a),(0,0,3a).

  ∴ 

  ∴ 

  ∴ , ∴ 

  ∴ . 故BE所成的角为

  (2)假设存在点F,要使CF⊥平面,只要

  不妨设AFb,则F,0,b),,0,, ∵ , ∴ 恒成立.

  

  故当2a时,平面

  21.解析:(1)法一:l

  解得. ∵ 成等比数列,

  ∴  ∴  

  ∴ . ∴ 

  法二:同上得

  ∴ PAx轴.. ∴ 

  (2) ∴ 

  即 , ∵ 

  ∴ ,即 . ∴ ,即 

  22.解析:(1). 又cb<1,

  故 方程fx)+1=0有实根,

  即有实根,故△=

  即

  又cb<1,得-3<c≤-1,由

  (2)

  ∴ cm<1 ∴ 

  ∴ . ∴ 的符号为正.

 


同步练习册答案