12. , 13. ,14. . 查看更多

 

题目列表(包括答案和解析)

物理学家JamesDForbes试图通过水的沸点来估计海拔高度,他知道通过气压计测得的大气压可用于得到海拔高度,气压越低,高度越高,他测量了17个地方水的沸点(℉)及大气压数据,并且对数据作了简单的处理,得到了较为明确的数学关系,所提数据如下:


测点编号

沸点(℉)

气压

1g(气压)

100´1g(气压)

1

194.5

20.79

1.3179

131.79

2

194.3

20.79

1.3179

131.79

3

197.9

22.40

1.3502

135.02

4

198.4

22.67

1.3555

135.55

5

199.4

23.15

1.3646

136.46

6

199.9

23.35

1.3683

136.83

7

200.9

23.89

1.3782

137.82

8

201.1

23.99

1.3800

138.00

9

201.4

24.02

1.3805

138.05

10

201.3

24.01

1.3806

138.06

11

203.6

25.14

1.4004

140.04

12

204.6

26.57

1.4244

142.44

13

209.5

28.49

1.4547

145.47

15

208.6

27.76

1.4434

144.34

15

210.7

29.04

1.4630

146.30

16

211.9

29.88

1.4754

147.54

17

212.2

30.06

1.4780

147.80

1)试作出气压y=100´1g(气压)关于沸点(℉)的散点图;

2)根据散点图判断变量xy的相关关系;计算变量xy的相关系数;

3)建立变量xy的一元线性回归方程。

查看答案和解析>>

物理学家JamesDForbes试图通过水的沸点来估计海拔高度,他知道通过气压计测得的大气压可用于得到海拔高度,气压越低,高度越高,他测量了17个地方水的沸点(℉)及大气压数据,并且对数据作了简单的处理,得到了较为明确的数学关系,所提数据如下:


测点编号

沸点(℉)

气压

1g(气压)

100´1g(气压)

1

194.5

20.79

1.3179

131.79

2

194.3

20.79

1.3179

131.79

3

197.9

22.40

1.3502

135.02

4

198.4

22.67

1.3555

135.55

5

199.4

23.15

1.3646

136.46

6

199.9

23.35

1.3683

136.83

7

200.9

23.89

1.3782

137.82

8

201.1

23.99

1.3800

138.00

9

201.4

24.02

1.3805

138.05

10

201.3

24.01

1.3806

138.06

11

203.6

25.14

1.4004

140.04

12

204.6

26.57

1.4244

142.44

13

209.5

28.49

1.4547

145.47

15

208.6

27.76

1.4434

144.34

15

210.7

29.04

1.4630

146.30

16

211.9

29.88

1.4754

147.54

17

212.2

30.06

1.4780

147.80

1)试作出气压y=100´1g(气压)关于沸点(℉)的散点图;

2)根据散点图判断变量xy的相关关系;计算变量xy的相关系数;

3)建立变量xy的一元线性回归方程。

查看答案和解析>>

(本小题满分13分)

       为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

编号

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;

(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;

(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。

查看答案和解析>>

某班50名学生在一次百米测试中,成绩全部介于13秒

与19秒之间,将测试结果按如下方式分成六组:第一

组,成绩大于等于13秒且小于14秒;第二组,成绩大

于等于14秒且小于15秒;……第六组,成绩大于等于

18秒且小于等于19秒。右图是按上述分组方法得到的

频率分布直方图。设成绩小于17秒的学生人数占全班

总人数的百分比为,成绩大于等于15秒且小于17秒

的学生人数为,则从频率分布直方图中可分析出

分别为(    )

A.0.9,35                B.0.9,45   

C.0.1,35                 D.0.1,45

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;第六组,成绩大于等于18秒且小于等于19秒。下图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为
[     ]
A.0.9,35
B.0.9,45
C.0.1,35
D.0.1,45

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

答案

D

A

B

C

B

B

B

D

二、填空题

9.1;      10. ;   11.12;    12.;    13.;   14.

三、解答题

15.解:(Ⅰ)由,根据正弦定理得

所以,…………………………………………………………………………………………4分

为锐角三角形得.                 …………………………………………7分

(Ⅱ)根据余弦定理,得.           ………10分

所以,.                ……………………………………………………………12分

 

16.解:(1)由题意可知

时, .                   ……3分

时,,亦满足上式.                            ……5分

∴数列的通项公式为).                            ……6分

(2)由(1)可知,                                                ……7分

∴数列是以首项为,公比为的等比数列,                           ……9分

.                                   ……12分

 

17.

 

……5分

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

 

 

 

 

 

 

 

……12分

 

……14分

 

 

18.解:(1)由   …………………2分

……4分

 

函数的单调区间如下表:

(-¥,-

(-,1)

1

(1,+¥)

0

0

­

极大值

¯

极小值

­

所以函数的递增区间是(-¥,-)与(1,+¥),递减区间是(-,1)。      …9分

(2)

时,为极大值,而,则为最大值。

要使恒成立,只需

解得。                                        ……………………14分

19.解:(1)设所求直线的斜率为,其方程为,代入椭圆方程并化简得:

                …………………………2分

        设直线l与椭圆交于P1x1y1)、P2x2y2),则

因为(4,2)是直线l被椭圆所截得的线段的中点,则

,解得。         …………………………………………6分

由点斜式可得l的方程为x+2y-8=0.               ………………………………………8分

(2)由(1)知,     ………………………10分

       ……………14分

 

 

 

 

20. 解:设AN的长为x米(x >2)

             ∵,∴|AM|=

∴SAMPN=|AN|•|AM|=         …………………………………………………………4分

(1)由SAMPN > 32 得  > 32 ,

         ∵x >2,∴,即(3x-8)(x-8)> 0

         ∴         即AN长的取值范围是……………………………8分

(2)令y=,则y′= ……………………………………… 10分

∵当,y′< 0,∴函数y=上为单调递减函数,

∴当x=3时y=取得最大值,即(平方米)

此时|AN|=3米,|AM|=米      ……………………………………………………… 14分