(Ⅱ)若G为椭圆上不同于长轴端点任一点.求取值范围, 查看更多

 

题目列表(包括答案和解析)

已知椭圆的中心在坐标原点,焦点在X轴上,F1,F2分别是椭圆的左、右焦点,M是椭圆短轴的一个端点,△MF1F2的面积为4,过F1的直线与椭圆交于A,B两点,△ABF2的周长为.

(Ⅰ)求此椭圆的方程;

(Ⅱ)若N是左标平面内一动点,G是△MF1F2的重心,且,求动点N的轨迹方程;

(Ⅲ)点p审此椭圆上一点,但非短轴端点,并且过P可作(Ⅱ)中所求得轨迹的两条不同的切线,、R是两个切点,求的最小值.

查看答案和解析>>

(本小题满分13分)如图,分别是椭圆ab>0)的左右焦点,M为椭圆上一点,垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行。

(1)求椭圆的离心率;

(2)若G为椭圆上不同于长轴端点任一点,求∠取值范围;

(3)过且与OM垂直的直线交椭圆于PQ

求椭圆的方程

查看答案和解析>>

(本小题满分13分)如图,分别是椭圆ab>0)的左右焦点,M为椭圆上一点,垂直于x轴,且OM与椭圆长轴和短轴端点的连线AB平行。
(1)求椭圆的离心率;
(2)若G为椭圆上不同于长轴端点任一点,求∠取值范围;
(3)过且与OM垂直的直线交椭圆于PQ
求椭圆的方程

查看答案和解析>>

 

二、选择题

 

题号

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

C

B

C

A

 

三、填空题

(11){x│x<1 } (12) (13)  3   (14)m=0或m≥1    (15) 2004

(16)②③④

三解答题

(17)(Ⅰ);  (Ⅱ).

 

(18)解:由题目知的图像是开口向下,交轴于两点的抛物线,对称轴方程为(如图)

那么,当时,有,代入原式得:

解得:

经检验知: 不符合题意,舍去.

(Ⅰ)由图像知,函数在内为单调递减,所以:当时,,当时,.

内的值域为

(Ⅱ)令

要使的解集为R,则需要方程的根的判别式,即

解得  时,的解集为R.

(19)(Ⅰ);  (Ⅱ)存在M=4.

 

(20)解:任设x 1>x2

         f(x 1)-f(x2) = a x 1+ - a x 2 -

                  =(x 1-x 2)(a+ )

         ∵f(x)是R上的减函数,

         ∴(x 1-x 2)(a+ )<0恒成立

<1

       ∴a≤ -1 

(21)解:(Ⅰ)由已知

  

(Ⅱ)设

当且仅当时, 

 

(Ⅲ)

 椭圆的方程为

(22)(Ⅰ).

(Ⅱ)的单调递增区间为,单调递减区间为.

 

 

 

 


同步练习册答案