几何概型的意义也可以这样理解: 向区域G中任意投掷一个点M.点M落在G内的部分区域g 的概率P定义为:g的度量与G的度量之比.即: . 查看更多

 

题目列表(包括答案和解析)

人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.

分析:假设他在0~60分钟之间任何一个时刻打开收音机是等可能的,但0~60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率.我们可以通过随机模拟的方法得到随机事件发生的概率的近似值,也可以通过几何概型的求概率公式得到事件发生的概率.因为电台每隔1小时报时一次,他在0~60之间任何一个时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与这时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.

查看答案和解析>>

一数学兴趣小组利用几何概型的相关知识作实验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形的内切圆区域有豆4608颗,问他们所测得的圆周率为
 
(小数点后保留一位数)

查看答案和解析>>

用长12cm的线段AB上任取一点M,并以线段AM为边作正方形,试求这个正方形的面积介于36cm2和81cm2之间的概率,并用随机模拟实验设计求解此概率近似值的过程,最后比较上面两种解法所得的结果,你由此得出的结论是什么?
(提示:几何概型的概率求解公式为P(A)=
事件A所对应区域长度(或面积,体积)试验所有结果对应区域长度(或面积,体积)
).

查看答案和解析>>

(2013•郑州一模)一数学兴趣小组利用几何概型的相关知识做实验计算圆周率,他们向一个边长为1米的正方形区域均匀撒豆,测得正方形区域有豆5120颗,正方形内节圆区域有豆4009颗,则他们所没得圆周率为(保留两位有效数字)(  )

查看答案和解析>>

用随机模拟方法求得某几何概型的概率为m,其实际概率的大小为n,则(  )

A.m>n   B.m<n

C.mn  D.mn的近似值

 

查看答案和解析>>


同步练习册答案