题目列表(包括答案和解析)
条件概率及其性质.
(1)对于任何两个事件A和B在已知事件A发生的条件下,事件B发生的概率叫做_________,用符号_________来表示,其公式为P(B|A)=_________.
(2)条件概率具有的性质:
①_________;
②如果B和C是两个互斥事件,则
P(B∪C|A)=_________.
| 1 |
| 10 |
| A.①②③④ | B.① | C.③④ | D.①② |
| 51 |
| 100 |
| . |
| B |
| . |
| A |
| . |
| A |
| . |
| B |
| A.1 | B.2 | C.3 | D.4 |
有下列命题:①两个事件对立是这两个事件互斥的充分不必要条件;②如果两个事件是相互独立事件,那么它们一定不是互斥事件;③若P(AB)≠P(A)·P(B),则A、B一定不是相互独立事件;④设事件A、B的概率都大于零,若A+B是必然事件,则A、B一定对立事件,其中为真命题的是________(填上所有真命题的序号)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
|
日需求量n |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
|
频数 |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
【命题意图】本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.
【解析】(Ⅰ)当日需求量
时,利润
=85;
当日需求量
时,利润
,
∴
关于
的解析式为
;
(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为
=76.4;
(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com