增强几何概型在解决实际问题中的应用意识. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

Monte-Carlo方法在解决数学问题中有广泛的应用。下面是利用Monte-Carlo方法来计算定积分。考虑定积分,这时等于由曲线轴,所围成的区域M的面积,为求它的值,我们在M外作一个边长为1正方形OABC。设想在正方形OABC内随机投掷个点,若个点中有个点落入中,则的面积的估计值为,此即为定积分的估计值I。向正方形中随机投掷10000个点,有个点落入区域M

(1)若=2099,计算I的值,并以实际值比较误差是否在5%以内

(2)求的数学期望

(3)用以上方法求定积分,求I与实际值之差在区间(—0.01,0.01)的概率

附表:

n

1899

1900

1901

2099

2100

2101

P(n)

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

(本小题满分14分)

Monte-Carlo方法在解决数学问题中有广泛的应用。下面是利用Monte-Carlo方法来计算定积分。考虑定积分,这时等于由曲线轴,所围成的区域M的面积,为求它的值,我们在M外作一个边长为1正方形OABC。设想在正方形OABC内随机投掷个点,若个点中有个点落入中,则的面积的估计值为,此即为定积分的估计值I。向正方形中随机投掷10000个点,有个点落入区域M

(1)若=2099,计算I的值,并以实际值比较误差是否在5%以内

(2)求的数学期望

(3)用以上方法求定积分,求I与实际值之差在区间(—0.01,0.01)的概率

附表:

n

1899

1900

1901

2099

2100

2101

P(n)

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

查看答案和解析>>

下列说法正确的是(  )

查看答案和解析>>

几何概型

事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的________成正比,而与A的位置和形状无关,满足以上条件的试验称为几何概型.

查看答案和解析>>

三角函数的叠加问题.

在交流电、简谐振动及各种“波”等问题的研究中,三角函数发挥了重要的作用.在这些实际问题中,经常会涉及“波”的叠加,在数学上常常可以归结为三角函数的叠加问题.设y1=3sin(2t+),y2=4sin2t表示两个不同的正弦“波”,试求它们叠加后的振幅、周期.

查看答案和解析>>


同步练习册答案