19. 解:(Ⅰ) 由题设知:. ①当时.函数的单调递增区间为及, ②当时.函数的单调递增区间为及, ③当时.函数的单调递增区间为及.-6分 中③知且.解得. --8分 因此.函数解析式为. --9分 (Ⅲ)假设存在经过原点的直线为曲线的对称轴.显然.轴不是曲线的对称轴.故可设:(). 设为曲线上的任意一点.与关于直线对称.且..则也在曲线上.由此得 ..且.. --12分 整理得.解得或. 所以存在直线及为曲线的对称轴. --14分 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

 

喜爱打篮球

不喜爱打篮球

合计

男生

 

5

 

女生

10

 

 

合计

 

 

50

已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整(不用写计算过程);

(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;

(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为,求的分布列与期望.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 (参考公式:,其中)

 

查看答案和解析>>

(本小题满分14分)

  已知:函数),

  (1)若函数图象上的点到直线距离的最小值为,求的值;

  (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围;

  (3)对于函数定义域上的任意实数,若存在常数,使得不等式都成立,则称直线为函数的“分界线”。设,试探究是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

     (ⅰ)求当时,的最小值;

     (ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

设数列是公差为的等差数列,其前项和为

(1)已知

(ⅰ)求当时,的最小值;

(ⅱ)当时,求证:

(2)是否存在实数,使得对任意正整数,关于的不等式的最小正整数解为?若存在,则求的取值范围;若不存在,则说明理由.

查看答案和解析>>

(本小题满分14分)

已知数列中, 且点在直线上.

   (1)求数列的通项公式;

   (2)若函数求函数的最小值;

   (3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立? 若存在,写出的解析式,并加以证明;若不存在,试说明理由.

查看答案和解析>>


同步练习册答案