题目列表(包括答案和解析)
(本小题满分14分)
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
|
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
|
男生 |
|
5 |
|
|
女生 |
10 |
|
|
|
合计 |
|
|
50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为
,求
的分布列与期望.
下面的临界值表供参考:
|
|
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
|
|
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:
,其中
)![]()
(本小题满分14分)
已知:函数
(
),
.
(1)若函数
图象上的点到直线
距离的最小值为
,求
的值;
(2)关于
的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(3)对于函数
与
定义域上的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
为函数
与
的“分界线”。设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)
设数列
是公差为
的等差数列,其前
项和为
.
(1)已知
,
,
(ⅰ)求当![]()
时,
的最小值;
(ⅱ)当![]()
时,求证:
;
(2)是否存在实数
,使得对任意正整数
,关于
的不等式
的最小正整数解为
?若存在,则求
的取值范围;若不存在,则说明理由.
(本小题满分14分)
已知数列
中,
且点
在直线
上.
(1)求数列
的通项公式;
(2)若函数
求函数
的最小值;
(3)设
表示数列
的前
项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立? 若存在,写出
的解析式,并加以证明;若不存在,试说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com