7.不等式这部分知识.渗透在中学数学各个分支中.有着十分广泛的应用.因此不等式应用问题体现了一定的综合性.灵活多样性.这对同学们将所学数学各部分知识融会贯通.起到了很好的促进作用.在解决问题时.要依据题设.题断的结构特点.内在联系.选择适当的解决方案.最终归结为不等式的求解或证明.不等式的应用范围十分广泛.它始终贯串在整个中学数学之中.诸如集合问题.方程(组)的解的讨论.函数单调性的研究.函数定义域的确定.三角.数列.复数.立体几何.解析几何中的最大值.最小值问题.无一不与不等式有着密切的联系.许多问题.最终都可归结为不等式的求解或证明. 查看更多

 

题目列表(包括答案和解析)

已知f(x)=lgx:
(1)在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式,如从f(x)=lgx可抽象出性质:f(x1•x2)=f(x1)+f(x2).
对于下面两个具体函数,试分别抽象出一个与上面类似的性质:
由h(x)=2x可抽象出性质为
h(x1+x2)=h(x1)•h(x2
h(x1+x2)=h(x1)•h(x2

由φ(x)=3x+1可抽象出性质为
φ(x1+x2)=φ(x1)+φ(x2
φ(x1+x2)=φ(x1)+φ(x2

(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.

查看答案和解析>>

12、在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式如从f(x)=lgx可抽象出f(x1•x2)=f(x1)+f(x2)的性质,那么由h(x)=
任意指数函数均可,如h(x)=2x
(填一个具体的函数)可抽象出性质h(x1+x2)=h(x1)•h(x2).

查看答案和解析>>

14、在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维方式.如从指数函数中可抽象出f(x1+x2)=f(x1)•f(x2)的性质;从对数函数中可抽象出f(x1•x2)=f(x1)+f(x2)的性质,那么从函数
y=kx(k≠0)
.(写出一个具体函数即可)可抽象出f(x1+x2)=f(x1)+f(x2)的性质.

查看答案和解析>>

已知f(x)=lgx:
(1)在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式,如从f(x)=lgx可抽象出性质:f=f(x1)+f(x2).
对于下面两个具体函数,试分别抽象出一个与上面类似的性质:
由h(x)=2x可抽象出性质为______,
由φ(x)=3x+1可抽象出性质为______.
(2)g(x)=f(x2+6x+4)-f(x),求g(x)的最小值.

查看答案和解析>>

在中学数学中,从特殊到一般,从具体到抽象是常见的一种思维形式如从可抽象出的性质,那么由=       (填一个具体的函数)可抽象出性质

 

查看答案和解析>>


同步练习册答案