8.若函数的图象可以是 ( ). 查看更多

 

题目列表(包括答案和解析)

把函数的图象按向量平移得到函数的图象. 

(1)求函数的解析式; (2)若,证明:.

【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 ,便可以得到结论。第二问中,令,然后求导,利用最小值大于零得到。

(1)解:设上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入 得y-2=ln(x+1)-2即y=ln(x+1),所以.……4分

(2) 证明:令,……6分

……8分

,∴,∴上单调递增.……10分

,即

 

查看答案和解析>>

若函数f(x)的图象是连续不间断的,根据下面的表格,可以断定f(x)的零点所在的区间为(    )。(只填序号)
①(-∞,1];②[1,2];③[2,3];④[3,4];⑤[4,5];⑥[5,6];⑦[6,+∞)。

x

1

2

3

4

5

6

f(x)

136.123

15.542

-3.930

10.678

-50.667

-305.678

查看答案和解析>>

下列说法:①当;②ABC中, 成立的充要条件;③函数的图象可以由函数(其中)平移得到;④已知是等差数列的前项和,若,则.;⑤函数与函数的图象关于直线对称。其中正确的命题的序号为          .

查看答案和解析>>

给出以下四个命题:

    ①若命题:“,使得”,则:“,均有

②函数的图象可以由函数的图象仅通过平移得到。

    ③函数是同一函数

    ④在中,若,则3:2:1

    其中真命题的个数为                                       (    )

    A.1                B.2              C.3              D.4

查看答案和解析>>

f (x)=sin 2x(sin x-cos x)(sin x+cos x),其中x∈R.

(Ⅰ) 该函数的图象可由 的图象经过怎样的平移和伸缩变换得到?

(Ⅱ)若f (θ)=,其中,求cos(θ)的值;

【解析】第一问中,

变换分为三步,①把函数的图象向右平移,得到函数的图象;

②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数的图象;

③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;

第二问中因为,所以,则,又 ,,从而

进而得到结论。

(Ⅰ) 解:

。…………………………………3

变换的步骤是:

①把函数的图象向右平移,得到函数的图象;

②令所得的图象上各点的纵坐标不变,把横坐标缩短到原来的倍,得到函数的图象;

③令所得的图象上各点的横坐标不变,把纵坐标伸长到原来的2倍,得到函数的图象;…………………………………3

(Ⅱ) 解:因为,所以,则,又 ,,从而……2

(1)当时,;…………2

(2)当时;

 

查看答案和解析>>


同步练习册答案