20.广义的水解观认为:无论是盐的水解还是非盐的水解.其最终结果是反应中各物质和水 分别解离成两部分.然后两两重新组合成新的物质.根据上述信息.下列说法不正确的( ) A.PCl3的水解产物是HClO和PH3 B.CaO2的水解产物是Ca(OH)2和H2O2 C.NaClO的水解产物之一是HCl D.Mg3N2的水解产物是两种碱性物质 查看更多

 

题目列表(包括答案和解析)

甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了频数分布统计表如下:

甲校:

乙校:

()计算xy的值;

()统计方法中,同一组数据常用该区间的中点值作为代表,试根据抽样结果分别估计甲校和乙校的数学成绩平均分;(精确到0.1)

(Ⅲ)若规定考试成绩在[120150]内为优秀,由以上统计数据填写右面2×2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.

附:K2

查看答案和解析>>

甲乙两个学校高三年级分别有1100人,1000人,为了了解两个学校全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个学校一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120150]内为优秀,甲校:

乙校:

()计算xy的值;

()由以上统计数据填写下面2×2列联表,若按是否优秀来判断,是否有97.5%的把握认为两个学校的数学成绩有差异.

()根据抽样结果分别估计甲校和乙校的优秀率;若把频率作为概率,现从乙校学生中任取3人,求优秀学生人数ξ的分布列和数学期望;

附:K2

查看答案和解析>>

某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:

该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)求选取的2组数据恰好是相邻两个月的概率;

(Ⅱ)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式:)

查看答案和解析>>

迭代法是用于求方程或方程组近似根的一种常用的算法设计方法.设方程为f(x)=0,用某种数学方法导出等价的形式x=g(x),然后按以下步骤执行:

(1)选一个方程的近似根,赋给变量x0

(2)将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0

(3)当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算.

若方程有根,则按上述方法求得的x0就认为是方程的根.

试用迭代法求某个数的平方根,用流程图和伪代码表示问题的算法.

已知求平方根的迭代公式为x1

查看答案和解析>>

小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花5)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张.

(1)若小明恰好抽到黑桃4;

①请绘制出这种情况的树状图;②求小华抽出的牌的牌面数字比4大的概率.

(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.

查看答案和解析>>


同步练习册答案