理解一元二次方程的根就是二次函数与交点的横坐标.能够利用二次函数的图象求一元二次方程的近似根.进一步发展估算能力 教学重点和难点 重点:理解一元二次方程的根就是二次函数与交点的横坐标 难点:利用二次函数的图象求一元二次方程的近似根 教学过程设计 一. 从学生原有的认知结构提出问题 我们知道.二次函数与一元二次方程有一定的相似之处.它们的表达式基本相同.其实.二次函数中的y值为零时.那么就会变成一元二次方程.这节课.我们来研究它们之间的关系. 二. 师生共同研究形成概念 1. 书本引例 利用竖直上抛小球问题.引出二次函数与一元二次方程的关系.可由学生用自己的语言表达它们之间有什么关系. 2. 二次函数与一元二次方程的关系 ☆ 议一议 书本P 65 议一议 理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.理解何时方程有两个不等的实根.两个相等的实根和没有实根. 二次函数的图象与x轴的交点坐标有三种情况:有两个交点.有一个交点.没有交点.当二次函数的图象与x轴有交点时.交点的横坐标就是当时自变量x的值.即一元二次方程的根. 3. 用逐渐迫近的方法求一元二次方程的近似根 ☆ 想一想 书本P 67 估算方程的根 要让学生理解一元二次方程的根就是二次函数与交点的横坐标.能够利用二次函数的图象求一元二次方程的近似根.进一步发展估算能力. 三. 随堂练习 查看更多

 

题目列表(包括答案和解析)

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

已知一元二次方程x2axa-2=0.

(1)求证:不论a为何实数,此方程总有两个不相等的实数根;

(2)设a<0,当二次函数yx2axa-2的图象与x轴的两个交点的距离为时,求出此二次函数的解析式;

(3)在(2)的条件下,若此二次函数图象与x轴交于AB两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.

【解析】(1)判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了,(2)根据二次函数图象与x轴的两个交点的距离公式解答即可.(3)是二次函数综合应用问题和三角形的综合应用

 

查看答案和解析>>

在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:
一次函数与方程的关系:
(1)一次函数的解析式就是一个二元一次方程;
(2)点B的横坐标是方程①的解;
(3)点C的坐标(x,y)中的x,y的值是方程组②的解.一次函数与不等式的关系;
(1)函数 y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式③的解集;
(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式④的解集;(1)请根据以上方框中的内容在下面数学序号后边的横线上写出相应的结论:
kx+b=0
kx+b=0

y=kx+b
y=k1x+b1
y=kx+b
y=k1x+b1

kx+b>0
kx+b>0

kx+b<0
kx+b<0

(2)如图,如果点C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是
x≤1
x≤1

查看答案和解析>>

在数学学习中,及时对知识进行归纳和整理是改善学习的重要方法.善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,把相关知识归纳整理如下:
一次函数与方程的关系:
(1)一次函数的解析式就是一个二元一次方程;
(2)点B的横坐标是方程①的解;
(3)点C的坐标(x,y)中的x,y的值是方程组②的解.
一次函数与不等式的关系;
(1)函数 y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式③的解集;
(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式④的解集;
(1)请根据以上方框中的内容在下面数学序号后边的横线上写出相应的结论:
   
   
   
   
(2)如图,如果点C的坐标为(1,3),那么不等式kx+b≥k1x+b1的解集是   

查看答案和解析>>