例2.求函数y=的单调区间.并对其中一种情况证明. 思维分析:要求出y=的单调区间.首先求出定义域.然后利用复合函数的判定方法判断. 解:设u=x2-2x-3.则y=. 因为u≥0.所以x2-2x-3≥0.所以x≥3或x≤-1. 因为y=在u≥0时是增函数.又当x≥3时.u是增函数. 所以当x≥3时.y是x的增函数. 又当 x≤-1时.u是减函数. 所以当x≤-1时.y是x的减函数. 所以y=的单调递增区间是[3,+ ∞).单调递减区间是(-∞.-1]. 证明略 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常数,且ω>0)的最小正周期为2,且当x=
1
3
时,f(x)取得最大值2.
(1)求函数f(x)的表达式;
(2)求函数f(x+
1
6
)的单调递增区间,并指出该函数的图象可以由函数y=2sinx,x∈R的图象经过怎样的变换得到?
(3)在闭区间[
21
4
23
4
]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,则说明理由.

查看答案和解析>>

已知函数f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常数,且ω>0)的最小正周期为2,且当x=数学公式时,f(x)取得最大值2.
(1)求函数f(x)的表达式;
(2)求函数f(x+数学公式)的单调递增区间,并指出该函数的图象可以由函数y=2sinx,x∈R的图象经过怎样的变换得到?
(3)在闭区间[数学公式]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,则说明理由.

查看答案和解析>>

已知函数f(x)=Asinωx+Bcosωx(其中A、B、ω是非零常数,且ω>0)的最小正周期为2,且当x=
1
3
时,f(x)取得最大值2.
(1)求函数f(x)的表达式;
(2)求函数f(x+
1
6
)的单调递增区间,并指出该函数的图象可以由函数y=2sinx,x∈R的图象经过怎样的变换得到?
(3)在闭区间[
21
4
23
4
]上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,则说明理由.

查看答案和解析>>

对于二次函数y=-2x2+5x
(1)指出图象的开口方向,对称轴方程,顶点坐标;
(2)在如图所示的坐标系中画出该函数的图象;并说明其图象由y=-2x2的图象经过怎样的变换得到的.
(3)写出该函数的定义域、值域、单调区间(不要求证明).

查看答案和解析>>

对于二次函数y=-2x2+5x
(1)指出图象的开口方向,对称轴方程,顶点坐标;
(2)在如图所示的坐标系中画出该函数的图象;并说明其图象由y=-2x2的图象经过怎样的变换得到的.
(3)写出该函数的定义域、值域、单调区间(不要求证明).

查看答案和解析>>


同步练习册答案