3.公理1: 符号表示 查看更多

 

题目列表(包括答案和解析)

下列命题:①公理1可用集合符号叙述为:若A∈l,B∈l,且A∈α,B∈α,则必有l∈α;②四边形的两条对角线必相交于一点;③用平行四边形表示的平面,以平行四边形的四条边作为平面边界线;④梯形是平面图形.

其中正确的命题个数为

[  ]

A.1

B.2

C.3

D.4

查看答案和解析>>

下列命题:

①公理1可用集合符号叙述为:

若A∈l,B∈l,且A∈α,B∈α,则必有lα

②四边形的两条对角线必相交于一点;

③用平行四边形表示的平面,以平行四边形的四条边作为平面边界线;

④梯形是平面图形.

其中正确的命题个数为

[  ]

A.1
B.2
C.3
D.4

查看答案和解析>>

下列命题:

①公理1可用集合符号叙述为:

AlBl,且AαBα,则必有lα

②四边形的两条对角线必相交于一点;

③用平行四边形表示的平面,以平行四边形的四条边作为平面边界线;

④梯形是平面图形.

其中正确的命题个数为

[  ]

A1

B2

C3

D4

查看答案和解析>>

对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用记号{x}表示.例如{1.2}=0.2,{-1.2}=0.8,{
8
7
}=
1
7
.对于实数a,无穷数列{an}满足如下条件:a1={a},an+1=
1
an
  ,an≠0
0, an=0
  其中n=1,2,3,….
(1)若a=
2
,求a2,a3 并猜想数列{a}的通项公式(不需要证明);
(2)当a>
1
4
时,对任意的n∈N*,都有an=a,求符合要求的实数a构成的集合A;
(3)若a是有理数,设a=
p
q
 (p是整数,q是正整数,p,q互质),对于大于q的任意正整数n,是否都有an=0成立,证明你的结论.

查看答案和解析>>

(2013•房山区一模)对于实数x,将满足“0≤y<1且x-y为整数”的实数y称为实数x的小数部分,用记号<x>表示.例<1.2>=0.2,<-1.2>=0.8,<
8
7
>=
1
7
.对于实数a,无穷数列{an}满足如下条件:a1=<a>,an+1=
1
an
 an≠0
0        an=0
,其中n=1,2,3,….
(Ⅰ)若a=
2
,求数列{an}的通项公式;
(Ⅱ)当a>
1
4
时,对任意的n∈N+,都有an=a,求符合要求的实数a构成的集合A;
(Ⅲ)若a是有理数,设a=
p
q
 (p是整数,q是正整数,p,q互质),对于大于q的任意正整数n,是否都有an=0成立,证明你的结论.

查看答案和解析>>


同步练习册答案