1.等比数列:一般地.如果一个数列从 .每一项与它的前一项的比等于 .那么这个数列就叫做等比数列.这个常数叫做等比数列的 ,公比通常用字母q表示(q≠0).即:=q(q≠0) 注:⑴“从第二项起 与“前一项 之比为常数q ,{}成等比数列=q(,q≠0) ⑵ 隐含:任一项 ⑶ 时.{an}为常数列. 查看更多

 

题目列表(包括答案和解析)

(2006•蚌埠二模)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=(
12
)x
的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证数列{sn}是公比绝对值小于1的等比数列;
(2)设{an}的公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3)(理科做,文科不做)设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.(参考数据:210=1024)

查看答案和解析>>

为考察某种要务预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
精英家教网
药物效果试验列联表:
精英家教网
从没服用药的动物中任取两只,未患病数为ξ;从服用药物的动物中任取两只,未患病数为η.工作人员曾计算过P(ξ=0)=
38
9
P(η=0)

(1)求出列联表中数据x,y,M,N的值,请根据数据画出列联表的等高条形图,并通过条形图判断药物是否有效
(2)求ξ和η的均值并比较大小,请解+释所得出结论的实际含义;
(3)能够以97.5%的把握认为药物有效吗?
参考数据:
精英家教网
参考公式:一般地,假设有两个变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样
本频数列联表为
精英家教网
随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

为考察某种要务预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:

药物效果试验列联表:

从没服用药的动物中任取两只,未患病数为ξ;从服用药物的动物中任取两只,未患病数为η.工作人员曾计算过
(1)求出列联表中数据x,y,M,N的值,请根据数据画出列联表的等高条形图,并通过条形图判断药物是否有效
(2)求ξ和η的均值并比较大小,请解+释所得出结论的实际含义;
(3)能够以97.5%的把握认为药物有效吗?
参考数据:

参考公式:一般地,假设有两个变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样
本频数列联表为

随机变量

查看答案和解析>>

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11阶杨辉三角

查看答案和解析>>

杨辉是中国南宋末年的一位杰出的数学家、数学教育家、杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.如图是一个11阶杨辉三角:
(1)求第20行中从左到右的第4个数;
(2)若第n行中从左到右第14与第15个数的比为,求n的值;
(3)求n阶(包括0阶)杨辉三角的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35.显然,1+3+6+10+15=35.事实上,一般地有这样的结论:第m斜列中(从右上到左下)前k个数之和,一定等于第m+1斜列中第k个数.试用含有m、k(m,k∈N×)的数学公式表示上述结论,并给予证明.
第0行1第1斜列
第1行11第2斜列
第2行121第3斜列
第3行1331第4斜列
第4行14641第5斜列
第5行15101051第6斜列
第6行1615201561第7斜列
第7行172135352171第8斜列
第8行18285670562881第9斜列
第9行193684126126843691第10斜列
第10行1104512021025221012045101第11斜列
第11行1115516533046246233016555111第12斜列
11阶杨辉三角

查看答案和解析>>


同步练习册答案