1.建造一个容积为8m3, 深为2m的长方体无盖水池, 如果池底的造价为每平方米120元, 池壁的造价为每平方米80元, 求这个水池的最低造价. [师生互动] 学生质疑 教师释疑 查看更多

 

题目列表(包括答案和解析)

建造一个容积为8m3深为2m的长方体形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于一边长的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在(0,2]和[2,+∞)上的单调性并用定义法加以证明;
(3)如何设计水池尺寸,才能使总造价最低.

查看答案和解析>>

建造一个容积为8m3深为2m的长方体形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于一边长的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在(0,2]和[2,+∞)上的单调性并用定义法加以证明;
(3)如何设计水池尺寸,才能使总造价最低.

查看答案和解析>>

建造一个容积为8m3深为2m的长方体形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于一边长的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在(0,2]和[2,+∞)上的单调性并用定义法加以证明;
(3)如何设计水池尺寸,才能使总造价最低.

查看答案和解析>>

建造一个容积为8m3深为2m的长方体形无盖水池,如果池底和池壁的造价分别为120元/m2和80元/m2
(1)求总造价关于一边长的函数解析式,并指出该函数的定义域;
(2)判断(1)中函数在(0,2]和[2,+∞)上的单调性并用定义法加以证明;
(3)如何设计水池尺寸,才能使总造价最低.

查看答案和解析>>

建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,则水池的最低造价为
 

查看答案和解析>>


同步练习册答案