考纲点击:了解导数概念的某些实际背景(如瞬时速度.加速度.光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念 熟记基本导数公式,掌握两个函数和.差.积.商的求导法则,了解复合函数的求导法则 会求某些简单函数的导数,会求“过点的曲线的切线方程 和“在点处的切线方程 . 热点提示:导数的几何意义是高考考查重点.常以小题出现.导数的运算每年必考.一般不单独命题.在考查导数应用的同时考查导数的运算. 查看更多

 

题目列表(包括答案和解析)

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0) )为函数y=f(x)的“拐点”;定义:(2)设x0为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x0+x)+f(x0-x)=2f(x0)恒成立,则函数y=f(x)的图象关于点(x0,f(x0))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

设函数f(x)=x3-3ax+b(a≠0),且曲线y=f(x)在点(2,f(x))处与直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
提示:导数的几何意义是指:函数在该点的导数值等于与曲线相切于该点的切线的斜率k=f/(x)
.
 
x=x 0

查看答案和解析>>

11、函数f(x)=x(x-1)(x-2)…(x-50)在点x=0处导数为(  )

查看答案和解析>>

对于三次函数f(x)=ax3+bx2+cx+d(a≠0).定义:(1)f(x)的导数f′(x)(也叫f(x)一阶导数)的导数,f″(x)为f(x)的二阶导数,若方程f″(x)=0有实数解x,则称点(x,f(x) )为函数y=f(x)的“拐点”;定义:(2)设x为常数,若定义在R上的函数y=f(x)对于定义域内的一切实数x,都有f(x+x)+f(x-x)=2f(x)恒成立,则函数y=f(x)的图象关于点(x,f(x))对称.
(1)己知f(x)=x3-3x2+2x+2,求函数f(x)的“拐点”A的坐标;
(2)检验(1)中的函数f(x)的图象是否关于“拐点”A对称;
(3)对于任意的三次函数f(x)=ax3+bx2+cx+d(a≠0)写出一个有关“拐点”的结论(不必证明).

查看答案和解析>>

函数u=φ(x)在点x处有导数x(x),函数y=f(u)在点x的_________u处有导数u(u),则复合函数y=f[φ(x)]在点x处有导数,即_________或写成_________.

查看答案和解析>>


同步练习册答案