22.利用速度传感器与计算机结合.可以自动作出物体运动的图像. 某同学在一次实验中得到的运动小车的速度-时间图像如图所示.由此可以知道 A.小车先做匀加速运动.后做匀减速运动 B.小车运动的最大速度约为0.8m/s C.小车的最大位移在数值上等于图像中曲线与t轴所围的面积 D.小车做曲线运动 查看更多

 

题目列表(包括答案和解析)

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

(2013•永州一模)提高大桥的车辆通行能力可改善整个城市的交通状况.一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当车流密度不超过50辆/千米时,车流速度为30千米/小时.研究表明:当50<x≤200时,车流速度v与车流密度x满足v(x)=40-
k
250-x
.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时.
(Ⅰ)当0<x≤200时,求函数v(x)的表达式;
(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到个位,参考数据
5
≈2.236

查看答案和解析>>

下列函数关系中,可以看着是指数型函数y=kax(k∈R,a>0且a≠1)模型的是(  )
A、竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力).B、我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系.C、如果某人ts内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系.D、信件的邮资与其重量间的函数关系.

查看答案和解析>>

某港口的水深y(m)是时间t (0≤t≤24,单位:h)的函数,下表是该港口某一天从0:00时至24:00时记录的时间t与水深y的关系:
t(h) 0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
y(m) 10.0 13.0 9.9 7.0 10.0 13.0 10.1 7.0 10.0
经长时间的观察,水深y与t的关系可以用y=Asin(ωx+?)+h拟合.根据当天的数据,完成下面的问题:
(1)求出当天的拟合函数y=Asin(ωx+?)+h的表达式;
(2)如果某船的吃水深度(船底与水面的距离)为7m,船舶安全航行时船底与海底的距离不少于4.5m.那么该船在什么时间段能够进港?若该船欲当天安全离港,它在港内停留的时间最多不能超过多长时间.(忽略离港所需时间)
(3)若某船吃水深度为8m,安全间隙(船底与海底的距离)为2.5.该船在3:00开始卸货,吃水深度以每小时0.5m的速度减少,那么该船在什么时间必须停止卸货,驶向较安全的水域?

查看答案和解析>>

借助计算机(器)作某些分段函数图象时,分段函数的表示有时可以利用函数例如要表示分段函数可以将g(x)表示为g(x)=xS(x-2)+(-x)S(2-x).
设f(x)=(-x2+4x-3)S(x-1)+(x2-1)S(1-x).
(Ⅰ)请把函数f(x)写成分段函数的形式;
(Ⅱ)设F(x)=f(x-k),且F(x)为奇函数,写出满足条件的k值;(不需证明)
(Ⅲ)设h(x)=(x2-x+a-a2)S(x-a)+(x2+x-a-a2)S(a-x),求函数h(x)的最小值.

查看答案和解析>>


同步练习册答案