求证:多项式(a-2)(a2+2a+4)-[3a(a+1)2-2a(a-1)2-]+a­(1+a)的值与a的取值无关. 查看更多

 

题目列表(包括答案和解析)

求证:多项式(a-2)(a2+2a+4)-[3a(a+1)2-2a(a-1)2-(3a+1)(3a-1)]+a(1+a)的值与a的取值无关.

 

查看答案和解析>>

13、已知A=2a2-a+2,B=2,C=a2-2a+4,其中a>1.
(1)求证:A-B>0;
(2)试比较A,B,C三者之间的大小关系,并说明理由.

查看答案和解析>>

6、在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2-2a+1是二次三项式中,正确的个数有(  )

查看答案和解析>>

综合题
阅读下列材料:
配方法是初中数学中经常用到的一个重要方法,学好配方法对我们学习数学有很大的帮助,所谓配方就是将某一个多项式变形为一个完全平方式,变形一定要是恒等的,例如解方程x2-4x+4=0,则(x-2)2=0∴x=2x2-2x+y2+4y+5=0
求x、y.则有(x2-2x+1)+(y2+4y+4)=0∴(x-1)2+(y+2)2=0.解得x=1,y=-2.x2-2x-3=0则有x2-2x+1-1-3=0∴(x-1)2=4.解得x=3或x=-1,根据以上材料解答下列各题:
(1)若a2+4a+4=0.求a的值.
(2)x2-4x+y2+6y+13=0.求(x+y)-2011的值.
(3)若a2-2a-8=0.求a的值.
(4)若a,b,c表示△ABC的三边,且a2+b2+c2-ac-ab-bc=0,试判断△ABC的形状,并说明理由.

查看答案和解析>>

某同学在计算一个多项式减去a2-2a+1时,因误看做加上a2-2a+1,得到的答案3a2-2a+4,你能帮助这个同学做出.

查看答案和解析>>


同步练习册答案