解:(Ⅰ)在中. 且 查看更多

 

题目列表(包括答案和解析)

中,满足,边上的一点.

(Ⅰ)若,求向量与向量夹角的正弦值;

(Ⅱ)若=m  (m为正常数) 且边上的三等分点.,求值;

(Ⅲ)若的最小值。

【解析】第一问中,利用向量的数量积设向量与向量的夹角为,则

=,得,又,则为所求

第二问因为=m所以

(1)当时,则= 

(2)当时,则=

第三问中,解:设,因为

所以于是

从而

运用三角函数求解。

(Ⅰ)解:设向量与向量的夹角为,则

=,得,又,则为所求……………2

(Ⅱ)解:因为=m所以

(1)当时,则=-2分

(2)当时,则=--2分

(Ⅲ)解:设,因为

所以于是

从而---2

==

=…………………………………2

,则函数,在递减,在上递增,所以从而当时,

 

查看答案和解析>>

中,,分别是角所对边的长,,且

(1)求的面积;

(2)若,求角C.

【解析】第一问中,由又∵的面积为

第二问中,∵a =7  ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:         

又C为内角      ∴

解:(1) ………………2分

   又∵                   ……………………4分

     ∴的面积为           ……………………6分

(2)∵a =7  ∴c=5                                  ……………………7分

 由余弦定理得:      

    ∴                                     ……………………9分

又由余弦定理得:         

又C为内角      ∴                           ……………………12分

另解:由正弦定理得:  ∴ 又  ∴

 

查看答案和解析>>

(Ⅰ)阅读理解:
①对于任意正实数a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有当a=b时,等号成立.
②结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p

只有当a=b时,a+b有最小值2
p

(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m=
 
时,m+
1
m
有最小值
 

②若m>1,只有当m=
 
时,2m+
8
m-1
有最小值
 

(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
精英家教网

查看答案和解析>>

)在棱长为1的正方体中,分别是的中点,在棱上,且,H为的中点,应用空间向量方法求解下列问题.

(1)求证:;

(2)如图建系,求EF与所成的角的余弦;

(3)求FH的长.

 

 

 

查看答案和解析>>

(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式a≥|x+1|+|x-2|存在实数解,则实数a的取值范围是
 

B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=
 

精英家教网

C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1
x=3+cos θ
y=4+sin θ
 (θ为参数)和曲线C2:p=1上,则|AB|的最小值为
 

查看答案和解析>>


同步练习册答案