题目列表(包括答案和解析)
在
中,满足
,
是
边上的一点.
(Ⅰ)若
,求向量
与向量
夹角的正弦值;
(Ⅱ)若
,
=m (m为正常数) 且
是
边上的三等分点.,求
值;
(Ⅲ)若
且
求
的最小值。
【解析】第一问中,利用向量的数量积设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求
第二问因为
,
=m所以
,![]()
(1)当
时,则
=
(2)当
时,则
=![]()
第三问中,解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而![]()
运用三角函数求解。
(Ⅰ)解:设向量
与向量
的夹角为
,则![]()
令
=
,得
,又
,则
为所求……………2分
(Ⅱ)解:因为
,
=m所以
,![]()
(1)当
时,则
=
;-2分
(2)当
时,则
=
;--2分
(Ⅲ)解:设
,因为![]()
,
;
所以
即
于是
得![]()
从而
---2分
=
=![]()
=
…………………………………2分
令
,
则
,则函数
,在
递减,在
上递增,所以
从而当
时,![]()
在
中,
,分别是角
所对边的长,
,且![]()
(1)求
的面积;
(2)若
,求角C.
【解析】第一问中,由
又∵
∴
∴
的面积为![]()
第二问中,∵a =7 ∴c=5由余弦定理得:
得到b的值,然后又由余弦定理得:
又C为内角 ∴![]()
解:(1)
………………2分
又∵
∴
……………………4分
∴
的面积为
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C为内角 ∴
……………………12分
另解:由正弦定理得:
∴
又
∴![]()
| a |
| b |
| ab |
| ab |
| ab |
| p |
| p |
| 1 |
| m |
| 8 |
| m-1 |
)在棱长为1的正方体
中,
分别是
的中点,
在棱
上,且
,H为
的中点,应用空间向量方法求解下列问题.
(1)求证:
;
(2)如图建系,求EF与
所成的角的余弦;
(3)求FH的长.
![]()
|
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com