1.在半径为1的圆内作内接正三角形.然后在所得正三角形内作内切圆.接着在第2个圆内再作内接正三角形.如此无限作下去.则所有这些圆的面积之和(即前项和的极限)是( ). A. B. C. D.不存在 查看更多

 

题目列表(包括答案和解析)

在半径为1的圆O内,过其一条直径上的任意一点作垂直于直径的弦,求弦长超过圆内接正三角形边长的概率.

查看答案和解析>>

20.通常用分别表示△的三个内角所对边的边长,表示△的外接圆半径.

(1) 如图,在以为圆心、半径为2的⊙中,是⊙的弦,其中,求弦的长;

(2) 在△中,若是钝角,求证:

(3) 给定三个正实数,其中. 问:满足怎样的关系时,以为边长,为外接圆半径的△不存在、存在一个或存在两个(全等的三角形算作同一个)?在△存在的情况下,用表示.

查看答案和解析>>

精英家教网通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.
(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的长;
(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2
(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.

查看答案和解析>>

通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.
(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的长;
(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2
(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.

查看答案和解析>>

通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.
(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的长;
(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2
(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.

查看答案和解析>>


同步练习册答案