本节主要学习了根式与分数指数幂以及指数幂的运算.分数指数幂是根式的另一种表示形式.根式与分数指数幂可以进行互化.在进行指数幂的运算时.一般地.化指数为正指数.化根式为分数指数幂.化小数为分数进行运算.便于进行乘除.乘方.开方运算.以达到化繁为简的目的.对含有指数式或根式的乘除运算.还要善于利用幂的运算法则. 查看更多

 

题目列表(包括答案和解析)

如图,已知⊙中,直径垂直于弦,垂足为延长线上一点,切⊙于点,连接于点,证明:

【解析】本试题主要考查了直线与圆的位置关系的运用。要证明角相等,一般运用相似三角形来得到,或者借助于弦切角定理等等。根据为⊙的切线,∴为弦切角

连接   ∴…注意到是直径且垂直弦,所以 且…利用,可以证明。

解:∵为⊙的切线,∴为弦切角

连接   ∴……………………4分

又∵  是直径且垂直弦  ∴   且……………………8分

    ∴

 

查看答案和解析>>

已知椭圆的中心在原点,焦点在轴上,离心率为,它与直线相交于P、Q两点,若,求椭圆方程。

【解析】本试题主要考查了利用椭圆的几何性质以及直线与椭圆的位置关系我们求解椭圆的方程的试题。考查了同学们运用代数的方法来解决几何问题的能力。

 

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>

已知抛物线的顶点在坐标原点,它的准线经过双曲线的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是

(Ⅰ)求抛物线的方程及其焦点的坐标; (Ⅱ)求双曲线的方程及其离心率

【解析】本试题主要考查了抛物线方程的求解,以及双曲线与抛物线的交点问题,和双曲线的几何性质的综合求解和运用。

 

查看答案和解析>>

已知椭圆的中心在原点,焦点在轴上,离心率为,它与直线相交于P、Q两点,若,求椭圆方程。

【解析】本试题主要考查了利用椭圆的几何性质以及直线与椭圆的位置关系我们求解椭圆的方程的试题。考查了同学们运用代数的方法来解决几何问题的能力。

 

查看答案和解析>>


同步练习册答案