不妨设直线 -----7分 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=
ax
x2+b
,在x=1处取得极值2.
(1)求函数f(x)的解析式
(2)m满足什么条件时,区间(m,2m+1)为函数f(x)的单调增区间;
(3)若P(x0,y0)为f(x)=
ax
x2+b
图象上任意一点,直线/与.f(x)的图象切于P点,不妨设直线l的斜率为对于任意的x0∈R和对于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求实数c的取值范围.

查看答案和解析>>

已知函数f(x)=,在x=1处取得极值2.
(1)求函数f(x)的解析式
(2)m满足什么条件时,区间(m,2m+1)为函数f(x)的单调增区间;
(3)若P(x,y)为f(x)=图象上任意一点,直线/与.f(x)的图象切于P点,不妨设直线l的斜率为对于任意的x∈R和对于任意的t∈[4,5],均有k≥c(t2-2t-3)恒成立,求实数c的取值范围.

查看答案和解析>>

有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中的推广(不必证明):
过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条连线的斜率之积为定值-
b2
a2
过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条连线的斜率之积为定值-
b2
a2

查看答案和解析>>

有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线. 过有心曲线的中心的弦叫有心曲线的直径,(为研究方便,不妨设直径所在直线的斜率存在).

定理:过圆上异于直径两端点的任意一点与一条直径的两个端点连线,则两条连线的斜率之积为定值-1.

    (Ⅰ)写出该定理在椭圆中的推广,并加以证明;

     (Ⅱ)写出该定理在双曲线中的推广;你能从上述结论得到有心圆锥曲线(包括椭圆、双曲线、圆)的一般性结论吗?请写出你的结论.

查看答案和解析>>

有对称中心的曲线叫做有心曲线,显然圆、椭圆、双曲线都是有心曲线.过有心曲线的中心的弦叫有心曲线的直径(为研究方便,不妨设直径所在直线的斜率存在).
定理:过圆x2+y2=r2(r>0)上异于某直径两端点的任意一点,与这条直径的两个端点连线,则两条直线的斜率之积为定值-1.写出该定理在椭圆数学公式中的推广(不必证明):
________

查看答案和解析>>


同步练习册答案