19.解:(1)设{an}的公差为d.由题设有 解得a1=3.d=2.--------------5分 an=a1+(n-1)d=3+(n-1)×2=2n+1. 即{an}的通项公式为an=2n+1. ------------------6分 (2)由.得. --------8分 ∴ Tn . =. -------------------12分 查看更多

 

题目列表(包括答案和解析)

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

设等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d等于(  )

查看答案和解析>>

已知等差数列{an}的公差为d(d≠0),等比数列{bn}的公比为q(q>1).设sn=a1b1+a2b2+…+anbn,Tn=a1b1-a2b2+…+(-1)n-1anbn,n∈N+
(1)若a1(2)=b1(3)=1,d=2,q=3,求S3的值;
(Ⅱ)若b1(6)=1,证明(1-q)S2n-(1+q)T2n=
2dq(1-q2n)1-q2
,n∈(10)N+
(Ⅲ)若正数n满足2≤n≤q,设k1,k2,…,kn和l1,l2,…,ln是1,2,…,n的两个不同的排列,c1=ak1b1+ak2b2+…+aknbn,c2=al1b1+al2b2+…+alnbn证明c1≠c2

查看答案和解析>>

设等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=
 

查看答案和解析>>

设{an}是公差为d(d≠0)的等差数列,其前几项和为Sn.已知S10=110,且a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)令bn=
1Sn
,证明:b1+b2+…+bn<1.

查看答案和解析>>


同步练习册答案