007]如图1.在平面直角坐标系中.点O是坐标原点.四边形ABCO是菱形.点A的坐标为. 点C在x轴的正半轴上.直线AC交y轴于点M.AB边交y轴于点H. (1)求直线AC的解析式, (2)连接BM.如图2.动点P从点A出发.沿折线ABC方向以2个单位/秒的速度向终点C匀速运动.设△PMB的面积为S.点P的运动时间为t秒.求S与t之间的函数关系式(要求写出自变量t的取值范围), 的条件下.当 t为何值时.∠MPB与∠BCO互为余角.并求此时直线OP与直线AC所夹锐角的正切值. 查看更多

 

题目列表(包括答案和解析)

(2013•南岗区一模)如图1,在平面直角坐标系中,点0为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,矩形AOCB的对角线OB所在的直线的解析式为y=
1
2
x
,且0B=4
5

(1)求B点坐标.
(2)如图2,点M是OC中点,动点D在线段OM上运动(不与0、M两点重合),点E在边AB上,且AD=DE,点F在射线DE上,且AF=AD,设∠FAE=m°,∠OAD=n°,求出m与n之间的函数关系式,并直接写出自变量n的取值范围;
(3)如图3,在(2)的条件下,连接BF,若∠DFB=90°,求n的值.

查看答案和解析>>

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线b1
(1)平移抛物线b1,使平移后的抛物线经过点A,但不经过点B.写出平移后的一个抛物线的函数关系式:
 
 (任写一个即可);
(2)平移抛物线b1,使平移后的抛物线经过A,B两点,记为抛物线b2,如图2.求抛物线b2的函数关系式;
(3)设抛物线b2的顶点为C,k为y轴上一点.若S△ABK=S△ABC,如图3,求点K的坐标.
精英家教网

查看答案和解析>>

如图1,在平面直角坐标系中,点A(4,4),点B、C分别在x轴、y轴的正半轴上,S四边形OBAC=16.
(1)∠COA的值为
45°
45°

(2)求∠CAB的度数;
(3)如图2,点M、N分别是x轴正半轴及射线OA上一点,且OH⊥MN的延长线于H,满足∠HON=∠NMO,请探究两条线段MN、OH之间的数量关系,并给出证明.

查看答案和解析>>

如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线y=
16
x2+bx+c
过点O、A两点.
(1)求该抛物线的解析式;
(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

精英家教网如图,△ABC在平面直角坐标系中,点A(3,2)、B(0,2)、C(1,0).解答问题:
(1)请按要求对△ABC作如下变换:
①将△ABC绕点O逆时针旋转90°得到△A1B1C1
②以点O为位似中心,位似比为2:1,将△ABC在位似中心的异侧进行放大得到△A2B2C2;并写出点A1,A2的坐标:
 
 

(2)在△ABC内,点P的坐标为(a,b),在△A1B1C1中与之对应的点为Q,在△A2B2C2中与之对应的点为R.则S△PQR=
 
.(用含a,b的代数式表示)

查看答案和解析>>


同步练习册答案