22. 已知椭圆过点.长轴长为.过点C且斜率为k的直线l与椭圆相交于不同的两点A.B. (1)求椭圆的方程, (2)若线段AB中点的横坐标是求直线l的斜率, (3)在x轴上是否存在点M.使是与k无关的常数?若存在.求出点M的坐标,若不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分14分)

已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆相交于M,N两点,如果的周长等于8.

(I)求椭圆的方程;

(Ⅱ)若过点(1,0)的直线与椭圆交于不同两点P、Q,试问在轴上是否存在定点E(,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)

已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆相交于M,N两点,如果的周长等于8.

(I)求椭圆的方程;

(Ⅱ)若过点(1,0)的直线与椭圆交于不同两点P、Q,试问在轴上是否存在定点E(,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

 

查看答案和解析>>

(本小题满分14分)
已知椭圆的两个焦点,过且与坐标轴不平行的直线与椭圆相交于M,N两点,如果的周长等于8.
(I)求椭圆的方程;
(Ⅱ)若过点(1,0)的直线与椭圆交于不同两点P、Q,试问在轴上是否存在定点E(,0),使恒为定值?若存在,求出E的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分14分)

已知抛物线、椭圆、双曲线都经过点M(1,2),它们在x轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点。

(Ⅰ)求这三条曲线方程;

(Ⅱ)若定点P(3,0),A为抛物线上任意一点,是否存在垂直于x轴的直线l被以AP为直径的圆截得的弦长为定值?若存在,求出l的方程;若不存在,说明理由。

查看答案和解析>>

(本小题满分14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于轴上方的动点,直线AP,BP与直线分别交于M,N两点.

(1)求椭圆C的方程;

(2)求线段MN的长度的最小值;

(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在上变化时,讨论S的大小与Q点的个数之间的关系.

查看答案和解析>>


同步练习册答案