题目列表(包括答案和解析)
(09年莱西一中模拟)(12分)如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为
m,圆环的圆心距离地面的高度为
,蚂蚁每分钟爬行一圈,若蚂蚁的起始位置在最低点P0处.
(1)试确定在时刻t时蚂蚁距离地面的高度
;
(2)画出函数
在
时的图象;
(3)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过
m?
![]()
(8分)如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为
m,圆环的圆心距离地面的高度为
,蚂蚁每分钟爬行一圈,若蚂蚁的起始位置在最低点P0处.
(1)试确定在时刻t时蚂蚁距离地面的高度
;
(2)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过
m?
(8分)如图,一只蚂蚁绕一个竖直放置的圆环逆时针匀速爬行,已知圆环的半径为
m,圆环的圆心距离地面的高度为
,蚂蚁每分钟爬行一圈,若蚂蚁的起始位置在最低点P0处.
(1)试确定在时刻t时蚂蚁距离地面的高度
;
(2)在蚂蚁绕圆环爬行的一圈内,有多长时间蚂蚁距离地面超过
m?
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点
为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
![]()
(1)求
关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为
,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com