题目列表(包括答案和解析)
(本小题满分13分) 设椭圆E中心在原点,焦点在x轴上,短轴长为4,点M(2,
)在椭圆上,。
(1)求椭圆E的方程;
(2)设动直线L交椭圆E于A、B两点,且
,求△OAB的面积的取值范围。
(本小题满分13分)
设椭圆
的离心率
,右焦点到直线
的距离![]()
为坐标原点.
(I)求椭圆
的方程;
(II)过点
作两条互相垂直的射线,与椭圆
分别交于
两点,证明点
到直
线
的距离为定值,并求弦
长度的最小值.
(08年安徽卷理) (本小题满分13分)
设椭圆
过点
,且左焦点为![]()
(Ⅰ)求椭圆
的方程;
(Ⅱ)当过点
的动直线
与椭圆
相交于两不同点
时,在线段
上取点
,满足
。证明:点Q总在某定直线上。
(本小题满分13分)
设椭圆C:
(
)过点M(1,1),离心率
,O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线
是圆O:
的任意一条切线,且直线
与椭圆C相交于A,B两点,求证:
为定值.
.(本小题满分13分)
以椭圆
:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(Ⅰ)求椭圆
及其“准圆”的方程;
(Ⅱ)若椭圆
的“准圆”的一条弦
(不与坐标轴垂直)与椭圆
交于
、
两点,试证明:当
时,试问弦
的长是否为定值,若是,求出该定值;若不是,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com