在调查中.研究小组共发放问卷500份.回收问卷448份.其中空白卷28份.则有效问卷的回收率是 . 查看更多

 

题目列表(包括答案和解析)

(2006•松江区模拟)已知函数f(x)=
cos2x
1-|sinx|
,x∈(-
π
2
π
2
)

(1)在坐标系中作出函数的草图;
(2)研究其值域、奇偶性和单调性,并分别加以证明.

查看答案和解析>>

为配合国庆黄金周,促进旅游经济的发展,某火车站在调查中发现:开始售票前,已有a人在排队等候购票.开始售票后,排队的人数平均每分钟增b人.假设每个窗口的售票速度为c人/分钟,且当开放两个窗口时,25分钟后恰好不会出现排队现象(即排队的人刚好购完);若同时开放三个窗口时,则15分钟后恰好不会出现排队现象.
(1)若要求售票10分钟后不会出现排队现象,则至少需要同时开几个窗口?
(2)若a=60,在只开一个窗口的情况下,试求第n(n∈N*且n≤118)个购票者的等待时间tn关于n的函数,并求出第几个购票者的等待时间最长?
(注:购票者的等待时间指从开即始排队(售票开始前到达的人,从售票开始计时)到开始购票时止)

查看答案和解析>>

(2012•泉州模拟)为调查某校学生喜欢数学课的人数比例,采用如下调查方法:
(1)在该校中随机抽取100名学生,并编号为1,2,3,…,100;
(2)在箱内放置两个白球和三个红球,让抽取的100名学生分别从箱中随机摸出一球,记住其颜色并放回;
(3)请下列两类学生举手:(ⅰ)摸到白球且号数为偶数的学生;(ⅱ)摸到红球且不喜欢数学课的学生.
如果总共有26名学生举手,那么用概率与统计的知识估计,该校学生中喜欢数学课的人数比例大约是(  )

查看答案和解析>>

(2013•辽宁一模)甲乙两人进行乒乓球对抗赛,约定每局胜者得1分,负者得0分,比赛进行到有一个比对方多2分或打满6局时停止.设甲在每局中获胜的概率为P(P>
1
2
)
,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为
5
9
.若图为统计这次比赛的局数n和甲,乙的总得分数S,T的程序框图.其中如果甲获胜则输入a=1,b=0.如果乙获胜,则输入a=0,b=1.
(1)在图中,第一,第二两个判断框应分别填写什么条件?
(2)求P的值.
(3)设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

有下列说法:
①Sn是数列{an}的前n项和,若Sn=n2+n+1,则数列{an}是等差数列;
②若a>b且
1
a
1
b
,则a>0且b<0

③已知函数f(x)=x2-ax-2a,若存在x∈[-1,1],使f(x)≥0成立,则a<1;
④在△ABC中,a,b,c分别是角A、B、C的对边,若acosA=bcosB,则△ABC为等腰直角三角形.
其中正确的有
.(填上所有正确命题的序号)

查看答案和解析>>


同步练习册答案