题目列表(包括答案和解析)
(04年上海卷理)(18分)
设P1(x1,y1), P1(x2,y2),…, Pn(xn,yn)(n≥3,n∈N) 是二次曲线C上的点, 且a1=
2, a2=
2, …, an=
2构成了一个公差为d(d≠0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+…+an.
(1) 若C的方程为
=1,n=3. 点P1(3,0) 及S3=255, 求点P3的坐标;
(只需写出一个)
(2)若C的方程为
(a>b>0). 点P1(a,0), 对于给定的自然数n, 当公差d变化时, 求Sn的最小值;
. (3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1, P2,…Pn存在的充要条件,并说明理由.
(本题满分18分)第(1)小题满分6分,第(2)小题满分6分,第(3)小题满分6分。
圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点
、
是圆锥曲线C上不与顶点重合的任意两点,
是垂直于
轴的一条垂轴弦,直线
分别交
轴于点
和点
。
(1)试用
的代数式分别表示
和
;
(2)若C的方程为
(如图),求证:
是与
和点
位置无关的定值;
(3)请选定一条除椭圆外的圆锥曲线C,试探究
和
经过某种四则运算(加、减、乘、除),其结果是否是与
和点
位置无关的定值,写出你的研究结论并证明。
(说明:对于第3题,将根据研究结论所体现的思维层次,给予两种不同层次的评分)
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| 100 |
| y2 |
| 25 |
| x2 |
| a2 |
| y2 |
| b2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com