(1)若在上是减函数.求的取值范围, 查看更多

 

题目列表(包括答案和解析)

已知函数

   (Ⅰ)若上是减函数,求的取值范围;

   (Ⅱ)函数是否既有极大值又有极小值?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数

   (Ⅰ)若上是减函数,求的取值范围;

   (Ⅱ)函数是否既有极大值又有极小值?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数
(Ⅰ)若上是减函数,求的取值范围;
(Ⅱ)函数是否既有极大值又有极小值?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数上是增函数,上是减函数.

(1)求函数的解析式;

(2)若时,恒成立,求实数m的取值范围;

(3)是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.

 

查看答案和解析>>

已知函数上是增函数,在上为减函数.

(1)求的表达式;

(2)若当时,不等式恒成立,求实数的值;

(3)是否存在实数使得关于的方程在区间[0,2]上恰好有两个相异的实根,若存在,求实数的取值范围.

 

查看答案和解析>>

一、

1.C       2.D      3.B       4.D      5.D      6.B       7.D      8.A      9.A      10.C

11.D     12.A

1~11.略

12.解:

       是减函数,由,得,故选A.

二、

13.0.8       14.          15.          16.①③

三、

17.解:(1)

             

              的单调递增区间为

       (2)

             

             

             

18.解:(1)当时,有种坐法,

              ,即

              舍去.    

       (2)的可能取值是0,2,3,4

              又

             

              的概率分布列为          

0

2

3

4

              则

19.解:(1)时,

             

              又             

             

              是一个以2为首项,8为公比的等比数列

             

       (2)

             

              最小正整数

20.解法一:

       (1)设于点

              平面

于点,连接,则由三垂线定理知:是二面角的平面角.

由已知得

∴二面角的大小的60°.

       (2)当中点时,有平面

              证明:取的中点,连接,则

              ,故平面即平面

              平面

              平面

解法二:由已知条件,以为原点,以轴、轴、轴建立空间直角坐标系,则

             

       (1)

              ,设平面的一个法向量为

设平面的一个法向量为,则

二面角的大小为60°.

(2)令,则

      

       由已知,,要使平面,只需,即

则有,得中点时,有平面

21.解:(1)由条件得,所以椭圆方程是

             

(2)易知直线斜率存在,令

       由

      

代入

       有

22.解:(1)

       上为减函数,时,恒成立,

       即恒成立,设,则

       时,在(0,)上递减速,

      

      

(2)若即有极大值又有极小值,则首先必需有两个不同正要

       即有两个不同正根

       令

    ∴当时,有两个不同正根

    不妨设,由知,

    时,时,时,

    ∴当时,既有极大值又有极小值.www.ks5u.com

 

 


同步练习册答案