32.An actor can not well play the role without life experience more than a dancer can make a difference without much practice. A.any B.no C.not D.much 查看更多

 

题目列表(包括答案和解析)

已知a1=0,an+1=can+
cn+1n(n+1)
,c≠0,n∈N*
(I )求数列{an}的通项:
(II)若对任意,n∈N*,an+1>an恒成立,求c的取值范围.

查看答案和解析>>

在数列{an}中,a1=1,an+1=can+cn+1(2n+1)(n∈N*),其中实数c≠0.
(1)求{an}的通项公式;
(2)若对一切k∈N*有a2k>azk-1,求c的取值范围.

查看答案和解析>>

设数列{an}满足a1=a,an+1=can+1-c(n∈N*),其中a,c为实数,且c≠0.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设a=
1
2
,c=
1
2
bn=n(1-an)(n∈N*)
,求数列{bn}的前n项和Sn

查看答案和解析>>

数列{an}中,a1=a,an+1=can+1-c(n∈N*)a、c∈R,c≠0
(1)求证:a≠1时,{an-1}是等比数列,并求{an}通项公式.
(2)设a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)求:数列{bn}的前n项的和Sn
(3)设a=
3
4
c=-
1
4
cn=
3+an
2-an
.记dn=c2n-c2n-1,数列{dn}的前n项和Tn.证明:Tn
5
3
(n∈N*).

查看答案和解析>>

已知函数f(x)=ln(1+x)-x
(1)求f(x)的单调区间;
(2)记f(x)在区间[0,π](n∈N*)上的最小值为bx令an=ln(1+n)-bx
(i)如果对一切n,不等式
an
an+2
-
c
an+2
恒成立,求实数c的取值范围;
(ii)求证:
a1
a2
+
a1a3
a2a4
+…+
a1a3a2n-1
a2a4…a 2n
2an+1
-1

查看答案和解析>>


同步练习册答案