§2..1椭圆及其标准方程 一.椭圆的定义: 二.标准方程: 焦点在X轴: 焦点在Y轴: 查看更多

 

题目列表(包括答案和解析)

以椭圆C:
x2
a2
+
y2
b2
=1 (a>b>0)
的中心O为圆心,
a2+b2
为半径的圆称为该椭圆的“准圆”.设椭圆C的左顶点为P,左焦点为F,上顶点为Q,且满足|PQ|=2,S△OPQ=
6
2
S△OFQ
(Ⅰ)求椭圆ABC及其“准圆”的方程;
(Ⅱ)若椭圆C的“准圆”的一条弦ED(不与坐标轴垂直)与椭圆C交于M、N两点,试证明:当OM•ON=0时,试问弦ED的长是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

如图,已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的一条准线方程是x=
25
4
,其左、右顶点分别是A、B;双曲线C2
x2
a2
-
y2
b2
=1
的一条渐近线方程为3x-5y=0.
(1)求椭圆C1的方程及双曲线C2的方程;
(2)在第一象限内取双曲线C2上一点P,直线AP、PB分别交椭圆C1于点M、点N,若△AMN与△PMN的面积相等.①求P点的坐标 ②求证:
MN
AB
=0

查看答案和解析>>

设F1、F2分别是椭圆的左、右焦点.
(1)求椭圆的焦点坐标、离心率及准线方程;
(2)若P是该椭圆上的一个动点,求的最大值和最小值;
(3)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

设F1、F2分别是椭圆
x2
4
+y2=1
的左、右焦点.
(1)求椭圆
x2
4
+y2=1
的焦点坐标、离心率及准线方程;
(2)若P是该椭圆上的一个动点,求
PF1
PF2
的最大值和最小值;
(3)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

如图,已知点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切于点.

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中M、N是椭圆上的点,为原点,直线OM与ON的斜率之积为,求证:为定值.

查看答案和解析>>


同步练习册答案