13.史学家钱穆指出:“在此制度下.人民优秀分子均有参政之机会.新陈代谢.决无政治 上之特权阶级. 钱穆所说的“制度 是 ( ) A.荐举制 B.封邦建国制 C.科举制 D.三省六部制 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lg(x2+a x+1)的定义域为R,在此条件下,解关于x的不等式 x2-2x+a(2-a)<0.

查看答案和解析>>

如图,现有一块半径为2m,圆心角为90°的扇形铁皮AOB,欲从其中裁剪出一块内接五边形
ONPQR,使点P在AB弧上,点M,N分别在半径OA和OB上,四边形PMON是矩形,点Q在弧AP上,R点在线段AM上,四边形PQRM是直角梯形.现有如下裁剪方案:先使矩形PMON的面积达到最大,在此前提下,再使直角梯形PQRM的面积也达到最大.
(Ⅰ)设∠BOP=θ,当矩形PMON的面积最大时,求θ的值;
(Ⅱ)求按这种裁剪方法的原材料利用率.

查看答案和解析>>

一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3f2(x)=5|x|,f3(x)=2,f4(x)=
2x-1
2x+1
f5(x)=sin(
π
2
+x)
,f6(x)=xcosx.
(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;
(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.

查看答案和解析>>

(1)若椭圆的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦点依次为F1、F2,P是椭圆上异于长轴端点的任意一点.在此条件下我们可以提出这样一个问题:“设△PF1F2的过P角的外角平分线为l,自焦点F2引l的垂线,垂足为Q,试求Q点的轨迹方程?”
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
精英家教网
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 

在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
1
2
|EF1|=
 

注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是
 

其方程是:
 

(2)如图2,双曲线的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦点依次为F1、F2,P是双曲线上异于实轴端点的任意一点.请你试着提出与(1)类似的问题,并加以证明.

查看答案和解析>>

(坐标系与参数方程选做题)已知曲线C1的极坐标方程为:ρcosθ-ρsinθ+k=0,其中k为正数.以极点为坐标原点,极轴为x正半轴,建立平面直角坐标系,在此坐标系下,曲线C2的方程为
x=cosα
y=sinα
(α为参数).若曲线C1与曲线C2相切,则
k=
2
2

查看答案和解析>>


同步练习册答案