24.解:(1) 由题意.得················· 解得.······················ ∴二次函数的解析式是············· . ∴点P的坐标是(1.4)···················· (2) P(1.4).A∴=20.··············· 设点Q的坐标是(x.0) 则.··············· 当∠AQP=90°时... 解得. ∴点Q的坐标是(1.0)····················· 当∠APQ=90°时... 解得. ∴点Q的坐标是(9.0)····················· ∠PAQ=90°不合题意 综上所述.所求点的坐标是. 查看更多

 

题目列表(包括答案和解析)

巳知二次函数ya(x2-6x+8)(a>0)的图象与x轴分别交于点AB,与y轴交于点C.点D是抛物线的顶点.

(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;

(2)如图②,在正方形EFGH中,点EF的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PAPBPCPD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;

(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PAPBPCPD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.

【解析】二次函数的综合运用

 

查看答案和解析>>

巳知二次函数ya(x2-6x+8)(a>0)的图象与x轴分别交于点AB,与y轴交于点C.点D是抛物线的顶点.

(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;

(2)如图②,在正方形EFGH中,点EF的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PAPBPCPD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;

(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PAPBPCPD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.

【解析】二次函数的综合运用

 

查看答案和解析>>

将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的关系式.
解:在直线y=2x-3上任取两点A(1,-1),B(0,-3).
由题意知:
点A向右平移3个单位得A′(4,-1);再向上平移1个单位得A″(4,0)
点B向右平移3个单位得B′(3,-3);再向上平移1个单位得B″(3,-2)
设平移后的直线的关系式为y=kx+b.
则点A″(4,0),B″(3,-2)在该直线上,
可解得k=2,b=-8.
所以平移后的直线的关系式为y=2x-8.
根据以上信息解答下面问题:
将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的关系式.(平移抛物线形状不变)

查看答案和解析>>

将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的关系式.
解:在直线y=2x-3上任取两点A(1,-1),B(0,-3).
由题意知:
点A向右平移3个单位得A′(4,-1);再向上平移1个单位得A″(4,0)
点B向右平移3个单位得B′(3,-3);再向上平移1个单位得B″(3,-2)
设平移后的直线的关系式为y=kx+b.
则点A″(4,0),B″(3,-2)在该直线上,
可解得k=2,b=-8.
所以平移后的直线的关系式为y=2x-8.
根据以上信息解答下面问题:
将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的关系式.(平移抛物线形状不变)

查看答案和解析>>

阅读以下材料并完成后面的问题:

将直线y=2x-3向右平移3个单位长度,再向上平移1个单位长度,求平移后的直线的表达式.

解:在直线y=2x-3上任取两点A(1,-1)和B(0,-3).

由题意,知点A(1,-1)向右平移3个单位长度得到点(4,-1),再向上平移1个单位长度得点(4,0);点B(0,-3)向右平移3个单位长度得到(3,-3),再向上平移1个单位长度得到点(3,-2).设平移后的直线的表达式为y=kx+b,由点(4,0)、(3,-2)在该直线上,得0=4k+b,-2=3k+b.解得k=2,b=-8.所以平移后的直线的表达式为y=2x-8.

根据上面材料解答下面的问题:

将二次函数y=-x2+2x+3的图象向左平移1个单位长度,再向下平移2个单位长度,求平移后的抛物线的表达式(平移后抛物线的形状不变).

查看答案和解析>>


同步练习册答案