16 . 求过原点与曲线相切的直线方程. 17. 已知 用分析法证明: 18. 已知函数.问:是否存在这样的正数A.使得对定义域内的任意.恒有成立?试证明你的结论. 19. 已知函数 (1)当时.求的极值点, (2)设在 [ - 1 .1 ] 上是单调函数.求出的取值范围. 马鞍山市第二中学2009-2010学年度 查看更多

 

题目列表(包括答案和解析)

(本题满分12分)
对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:):
甲:13  15  14  14  9  14  21  9   10  11
乙:10  14  9  12  15  14  11  19  22  16
(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;
(2)计算甲种商品重量误差的样本方差;
(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽
中的概率。

查看答案和解析>>

(本题满分14分)某研究小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试的成绩(百分制)如下表所示:

 

序号

1

  2

  3

  4

  5

 6

  7

  8

9

10

数学成绩

95

 75

 80

  94

  92

  65

 67

  84

 98

71

物理成绩

 90

 63

 72

  87

  91

  71

 58

  82

 93

80

序号

11

 12

 13

  14

  15

  16

  17

  18

19

20

数学成绩

67

 93

 64

  78

  77

  90

  57

  84

 72

83

物理成绩

 77

 82

 48

  85

  69

  91

  61

  82

 78

86

若数学成绩90分(含90分)以上为优秀,物理成绩85分(含85分)以上为优秀。

⑴根据上表完成下面的列联表:

 

数学成绩优秀

数学成绩不优秀

合计

物理成绩优秀

 

      

  

物理成绩不优秀

 

       12

    

合计

 

      

    20

⑵根据⑴中表格的数据计算,有多少的把握,认为学生的数学成绩与物理成绩之间有关系?

 

查看答案和解析>>

(本题满分12分)

对甲、乙两种商品的重量的误差进行抽查,测得数据如下(单位:):

       甲:13  15  14  14  9  14  21  9   10  11

       乙:10  14  9  12  15  14  11  19  22  16

(1)画出样本数据的茎叶图,并指出甲,乙两种商品重量误差的中位数;

(2)计算甲种商品重量误差的样本方差;

(3)现从重量误差不低于15的乙种商品中随机抽取两件,求重量误差为19的商品被抽

中的概率。

 

查看答案和解析>>

(本题满分12分)某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:

序号

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

数学

成绩

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理

成绩

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

 

 

若单科成绩85分以上(含85分),则该科成绩为优秀.

(1)根据上表完成下面的2×2列联表(单位:人):

 

数学成绩优秀

数学成绩不优秀

合   计

物理成绩优秀

 

 

 

物理成绩不优秀

 

 

 

合   计

 

 

20

(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?

(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.

参考数据及公式:

①随机变量,其中为样本容量;

②独立检验随机变量的临界值参考表:

0.010

0.005

0.001

6.635

7.879

10.828

 

 

 

 

 

查看答案和解析>>

(本题满分8分)为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及频率如下表:

(1)完成上面的频率分布表;

(2)根据上表和图,估计数据落在

[10.95,11.35)范围内的概率约是多少?

分组

频数

频率

[10.75,10.85)

3

[10.85,10.95)

9

[10.95,11.05)

13

[11.05,11.15)

16

[11.15,11.25)

26

[11.25,11.35)

20

[11.35,11.45)

7

[11.45,11.55)

4

[11.55,11.65)

2

合计

100

查看答案和解析>>


同步练习册答案