题目列表(包括答案和解析)
(2009天津卷理)(本小题满分14分)
已知等差数列{
}的公差为d(d
0),等比数列{
}的公比为q(q>1)。设
=
+
…..+
,
=
-
+…..+(-1
,n![]()
若
=
= 1,d=2,q=3,求
的值;
若
=1,证明(1-q)
-(1+q)
=
,n![]()
;
(Ⅲ) 若正数n满足2
n
q,设
的两个不同的排列,
,
证明
。
本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。
(2009天津卷理)(本小题满分14分)
已知等差数列{
}的公差为d(d
0),等比数列{
}的公比为q(q>1)。设
=
+
…..+
,
=
-
+…..+(-1
,n![]()
若
=
= 1,d=2,q=3,求
的值;
若
=1,证明(1-q)
-(1+q)
=
,n![]()
;
(Ⅲ) 若正数n满足2
n
q,设
的两个不同的排列,
,
证明
。
本小题主要考查等差数列的通项公式、等比数列的通项公式与前n项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。
把函数
的图象按向量
平移得到函数
的图象.
(1)求函数
的解析式; (2)若
,证明:
.
【解析】本试题主要考查了函数 平抑变换和运用函数思想证明不等式。第一问中,利用设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
,便可以得到结论。第二问中,令
,然后求导,利用最小值大于零得到。
(1)解:设
上任意一点为(x,y)则平移前对应点是(x+1,y-2)代入
得y-2=ln(x+1)-2即y=ln(x+1),所以
.……4分
(2) 证明:令
,……6分
则
……8分
,∴
,∴
在
上单调递增.……10分
故
,即![]()
已知函数![]()
(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(Ⅲ)当x∈(0,e]时,证明:![]()
【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,
假设存在实数a,使
有最小值3,利用
,对a分类讨论,进行求解得到a的值。
第三问中,![]()
因为
,这样利用单调性证明得到不等式成立。
解:(Ⅰ) ![]()
(Ⅱ) ![]()
(Ⅲ)见解析
经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(km/h)之间的函数关系为y=
(v>0).
(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/小时)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?
本题主要考查函数、不等式等基本知识,考查应用数学知识分析问题和解决问题的能力.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com