解析:(Ⅰ)由.得. 查看更多

 

题目列表(包括答案和解析)

已知函数

(Ⅰ)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;

(Ⅱ)令g(x)= f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由;

(Ⅲ)当x∈(0,e]时,证明:

【解析】本试题主要是考查了导数在研究函数中的运用。第一问中利用函数f(x)在[1,2]上是减函数,的导函数恒小于等于零,然后分离参数求解得到a的取值范围。第二问中,

假设存在实数a,使有最小值3,利用,对a分类讨论,进行求解得到a的值。

第三问中,

因为,这样利用单调性证明得到不等式成立。

解:(Ⅰ)

(Ⅱ) 

(Ⅲ)见解析

 

查看答案和解析>>

已知函数,且,函数的图象经过点,且的图象关于直线对称,将函数的图象向左平移2个单位后得到函数的图象.

(Ⅰ)求函数的解析式;

(Ⅱ)若在区间上的值不小于8,求实数的取值范围.

(III)若函数满足:对任意的(其中),有,称函数的图象是“下凸的”.判断此题中的函数图象在是否是“下凸的”?如果是,给出证明;如果不是,说明理由.

 

查看答案和解析>>

已知函数,且,函数的图象经过点,且的图象关于直线对称,将函数的图象向左平移2个单位后得到函数的图象.
(Ⅰ)求函数的解析式;
(Ⅱ)若在区间上的值不小于8,求实数的取值范围.
(III)若函数满足:对任意的(其中),有,称函数的图象是“下凸的”.判断此题中的函数图象在是否是“下凸的”?如果是,给出证明;如果不是,说明理由.

查看答案和解析>>

已知向量,且,A为锐角,求:

(1)角A的大小;

(2)求函数的单调递增区间和值域.

【解析】第一问中利用,解得   又A为锐角                 

      

第二问中,

 解得单调递增区间为

解:(1)        ……………………3分

   又A为锐角                 

                              ……………………5分

(2)

                                                  ……………………8分

  由 解得单调递增区间为

                                                  ……………………10分

 

 

查看答案和解析>>

已知函数

(Ⅰ)若函数和函数在区间上均为增函数,求实数的取值范围;

(Ⅱ)若方程有唯一解,求实数的值.

【解析】第一问,   

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数

(Ⅱ)中方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解得到结论。

(Ⅰ)解: 

当0<x<2时,,当x>2时,

要使在(a,a+1)上递增,必须

如使在(a,a+1)上递增,必须,即

由上得出,当上均为增函数  ……………6分

(Ⅱ)方程有唯一解有唯一解

  (x>0)

随x变化如下表

x

-

+

极小值

由于在上,只有一个极小值,的最小值为-24-16ln2,

当m=-24-16ln2时,方程有唯一解

 

查看答案和解析>>


同步练习册答案