6.圆上到直线的距离等于的点共有 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,点Q到两点M(0,-
3
)
N(0,
3
)
的距离之和等于4,记点Q的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)以MN为直径的圆与曲线C有几个公共点?要说明理由;
(Ⅲ)P是曲线C上一点,则使△PMN是直角三角形的点P有几个?(直接作答,不写过程)

查看答案和解析>>

圆(x-1)2+(y+1)2=4上到直线x+y-
2
=0
的距离等于1的点共有(  )

查看答案和解析>>

在平面直角坐标系xOy中,点Q到两点M(0,-
3
)
N(0,
3
)
的距离之和等于4,记点Q的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)以MN为直径的圆与曲线C有几个公共点?要说明理由;
(Ⅲ)P是曲线C上一点,则使△PMN是直角三角形的点P有几个?(直接作答,不写过程)

查看答案和解析>>

已知椭圆的中心和抛物线的顶点都在坐标原点有公共焦点,点轴正半轴上,且的长轴长、短轴长及点右准线的距离成等比数列。

(Ⅰ)当的准线与右准线间的距离为时,求的方程;

(Ⅱ)设过点且斜率为的直线两点,交两点。当时,求的值。

查看答案和解析>>

已知椭圆的中心和抛物线的顶点都在坐标原点有公共焦点,点轴正半轴上,且的长轴长、短轴长及点右准线的距离成等比数列.

(Ⅰ)当的准线与右准线间的距离为时,求的方程;

(Ⅱ)设过点且斜率为的直线两点,交两点. 当时,求的值.

查看答案和解析>>

一、选择题(4′×10=40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空题(4′×4=16分)

11.       12.          13.       14.

三、解答题(共44分)

15.①解:原不等式可化为:  ………………………2′

www.ks5u.com   作根轴图:

 

 

 

                                                     ………………………4′

   可得原不等式的解集为:  ………………………6′

②解:直线的斜率  ………………………2′

∵直线与该直线垂直

              ………………………4′

的方程为: ………………………5′

为所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

当且仅当:………………………6′

       时,………………………7′

17.解:将代入中变形整理得:

………………………2′

首先………………………3′

   

由题意得:

解得:(舍去)………………………5′

由弦长公式得:………………………7′

18.解①设双曲线的实半轴,虚半轴分别为

由题得:   ∴………………………1′

于是可设双曲线方程为:………………………2′

将点代入可得:

∴该双曲线的方程为:………………………4′

②直线方程可化为:

则它所过定点代入双曲线方程:得:

………………………6′

又由

…………7′

……………………8′

19.解:①设中心关于的对称点为

解得:

,又点在左准线上,

的方程为:……………………4′

②设

成等差数列,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

……………………9′

∴椭圆的方程为:

 

 

 


同步练习册答案