左准线上. 查看更多

 

题目列表(包括答案和解析)

已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动点。
(Ⅰ)求椭圆标准方程;
(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点,使得为定值?,若存在,求出的坐标,若不存在,说明理由。
(Ⅲ)若在第一象限,且点关于原点对称,点轴上的射影为,连接 并延长交椭圆于点,证明:

查看答案和解析>>

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

查看答案和解析>>

已知,是椭圆左右焦点,它的离心率,且被直线所截得的线段的中点的横坐标为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设是其椭圆上的任意一点,当为钝角时,求的取值范围。

【解析】解:因为第一问中,利用椭圆的性质由   所以椭圆方程可设为:,然后利用

    

      椭圆方程为

第二问中,当为钝角时,,    得

所以    得

解:(Ⅰ)由   所以椭圆方程可设为:

                                       3分

    

      椭圆方程为             3分

(Ⅱ)当为钝角时,,    得   3分

所以    得

 

查看答案和解析>>

已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足

(Ⅰ) 求椭圆的标准方程;

(Ⅱ) 圆O是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。

 

查看答案和解析>>

已知是椭圆的左、右焦点,O为坐标原点,点P在椭圆上,线段与y轴的交点M满足
(Ⅰ) 求椭圆的标准方程;
(Ⅱ) 圆O是以为直径的圆,直线与圆相切,并与椭圆交于不同的两点,当,且满足时,求直线的方程。

查看答案和解析>>

一、选择题(4′×10=40分)

题号

1

2

3

4

5

6

7

8

9

10

答案

D

D

B

C

D

C

A

A

B

A

三、填空题(4′×4=16分)

11.       12.          13.       14.

三、解答题(共44分)

15.①解:原不等式可化为:  ………………………2′

www.ks5u.com   作根轴图:

 

 

 

                                                     ………………………4′

   可得原不等式的解集为:  ………………………6′

②解:直线的斜率  ………………………2′

∵直线与该直线垂直

              ………………………4′

的方程为: ………………………5′

为所求………………………6′

16.解:∵  ∴………………………1′

于是………………………3′

        ………………………4′

     ………………………5′

     

当且仅当:………………………6′

       时,………………………7′

17.解:将代入中变形整理得:

………………………2′

首先………………………3′

   

由题意得:

解得:(舍去)………………………5′

由弦长公式得:………………………7′

18.解①设双曲线的实半轴,虚半轴分别为

由题得:   ∴………………………1′

于是可设双曲线方程为:………………………2′

将点代入可得:

∴该双曲线的方程为:………………………4′

②直线方程可化为:

则它所过定点代入双曲线方程:得:

………………………6′

又由

…………7′

……………………8′

19.解:①设中心关于的对称点为

解得:

,又点在左准线上,

的方程为:……………………4′

②设

成等差数列,

即:

亦:

  ……………………6′

   ∴

……………………8′

,  ∴

又由代入上式得:

……………………9′

∴椭圆的方程为:

 

 

 


同步练习册答案