题目列表(包括答案和解析)
已知
在区间
上是增函数
(I)求实数
的取值范围;
(II)记实数
的取值范围为集合A,且设关于
的方程
的两个非零实根为
。
①求
的最大值;
②试问:是否存在实数m,使得不等式
对
及
恒成立?若存在,求m的取值范围;若不存在,请说明理由.
已知函数
。
(I)求f(x)的单调区间;
(II)若对任意x∈[1,e],使得g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(III)设F(x)=
,曲线y=F(x)上是否总存在两点P,Q,使得△POQ是以O(O为坐标原点)为钝角柄点的钝角三角开,且最长边的中点在y轴上?请说明理由。
已知函数![]()
(I)求函数
的极值;
(II)若对任意的
的取值范围。
一、选择题
1―10 ACBCB DBCDD
二、填空题
11.
12.
13.―3 14.
15.2 16.
17.<
三、解答题:
18.解:(I)

(II)由于区间
的长度是为
,为半个周期。
又
分别取到函数的最小值
所以函数
上的值域为
。……14分
19.解:(Ⅰ)证明:连接BD,设AC与BD相交于点F.
因为四边形ABCD是菱形,所以AC⊥BD.……………………2分
又因为PD⊥平面ABCD,AC
平面ABCD,所以PD⊥AC.………………4分
而AC∩BD=F,所以AC⊥平面PDB.
E为PB上任意一点,DE
平面PBD,所以AC⊥DE.……………………6分
(Ⅱ)连EF.由(Ⅰ),知AC⊥平面PDB,EF
平面PBD,所以AC⊥EF.
S△ACE =
AC?EF,在△ACE面积最小时,EF最小,则EF⊥PB.
S△ACE=9,
×6×EF=9,解得EF=3. …………………8分
由PB⊥EF且PB⊥AC得PB⊥平面AEC,则PB⊥EC,
又由EF=AF=FC=3,得EC⊥AE,而PB∩AE=E,故EC⊥平面PAB。………10分
作GH//CE交PB于点G,则GH⊥平面PAB,
所以∠GEH就是EG与平面PAB所成角。 ………………12分
在直角三角形CEB中,BC=6,
|