20. 如图5.已知椭圆的离心率为.其右焦点F是圆的圆心. (1)求椭圆方程, (2)过所求椭圆上的动点P作圆的两条切线分别交轴于两点.当时.求此时点P的坐标. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)如下图,某隧道设计为双向四车道,车道总宽20 m,要求通行车辆限高5 m,隧道全长2.5 km,隧道的两侧是与地面垂直的墙,高度为3米,隧道上部拱线近似地看成半个椭圆.

(1)若最大拱高h为6 m,则隧道设计的拱宽l是多少?

(2)若要使隧道上方半椭圆部分的土方工程量最小,则应如何设计拱高h和拱宽l

(已知:椭圆+=1的面积公式为S=,柱体体积为底面积乘以高.)

(3)为了使隧道内部美观,要求在拱线上找两个点MN,使它们所在位置的高度恰好是限高5m,现以MN以及椭圆的左、右顶点为支点,用合金钢板把隧道拱线部分连接封闭,形成一个梯形,若l=30m,梯形两腰所在侧面单位面积的钢板造价是梯形顶部单位面积钢板造价的倍,试确定MN的位置以及的值,使总造价最少.

查看答案和解析>>

(本小题满分12分)

已知点,过点作抛物线的切线,切点在第二象限,如图.

(Ⅰ)求切点的纵坐标;

(Ⅱ)若离心率为的椭圆  恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

21(本小题满分12分)

已知函数 .

(1)讨论函数的单调性;

(2)当时,恒成立,求实数的取值范围;

(3)证明:.

22.选修4-1:几何证明选讲

如图,是圆的直径,是弦,的平分线交圆于点,交的延长线于点于点

(1)求证:是圆的切线;

(2)若,求的值。

23.选修4—4:坐标系与参数方程

在平面直角坐标系中,直线过点且倾斜角为,以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,直线与曲线相交于两点;

(1)若,求直线的倾斜角的取值范围;

(2)求弦最短时直线的参数方程。

24. 选修4-5 不等式选讲

已知函数

   (I)试求的值域;

   (II)设,若对,恒有成立,试求实数a的取值范围。

查看答案和解析>>

(本小题满分12分)如图5,已知椭圆的离心率为,其右焦点F是圆的圆心。
(1)求椭圆方程;
(2)过所求椭圆上的动点P作圆的两条切线分别交轴于两点,当时,求此时点P的坐标。

查看答案和解析>>

精英家教网A.选修4-1:几何证明选讲
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2 ).圆O1的弦AB交圆O2于点C ( O1不在AB上).求证:AB:AC为定值.
B.选修4-2:矩阵与变换
已知矩阵A=
11
21
,向量β=
1
2
.求向量
α
,使得A2
α
=
β

C.选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,求过椭圆
x=5cosφ
y=3sinφ
(φ为参数)的右焦点,且与直线
x=4-2t
y=3-t
(t为参数)平行的直线的普通方程.
D.选修4-5:不等式选讲(本小题满分10分)
解不等式:x+|2x-1|<3.

查看答案和解析>>

本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)

已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点.

(Ⅰ)若的坐标分别是,求的最大值;

(Ⅱ)如题(20)图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:.求线段的中点的轨迹方程;

查看答案和解析>>


同步练习册答案