如图, 在直角梯形ABCD中, AD∥BC, DA⊥AB, 又AD=3, AB=4, BC=, E在线段AB的延长线上. 曲线DE 上任意一点到A.B两点的距离之和都相等. (1) 建立适当的坐标系, 并求出曲线DE的方程; (2) 过点C能否作出一条与曲线DE相交且以C点为中心的弦? 如果不能, 请说明理由; 如果 能, 请求出弦所在直线的方程. 查看更多

 

题目列表(包括答案和解析)

(本题12分)

如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2,  AA=2,  E、E、F分别是棱AD、AA、AB的中点。

(I)证明:直线EE//平面FCC

(II)求二面角B-FC-C的余弦值。    

查看答案和解析>>

(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面 ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC=2,  OAD中点.

(1)求证:PO⊥平面ABCD

(2)求直线PB与平面PAD所成角的正弦值;

(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

(本题12分)
如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC="2, " OAD中点.
(1)求证:PO⊥平面ABCD
(2)求直线PB与平面PAD所成角的正弦值;
(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

(、(本题12分)

如图,在四棱锥P-ABCD中,侧面PAD⊥底面 ABCD,侧棱PA=PD,底面ABCD为直角梯形,BCADABADAD=2AB=2BC=2,  OAD中点.

(1)求证:PO⊥平面ABCD

(2)求直线PB与平面PAD所成角的正弦值;

(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将ΔPDC折起,使PD⊥平面ABCD(如图②)

(1)求证AP∥平面EFG;

(2)求平面EFG与平面PDC所成角的大小;

(3)求点A到平面EFG的距离。

 

查看答案和解析>>


同步练习册答案