可知在时.成立 查看更多

 

题目列表(包括答案和解析)

(14分)已知函数,点,点

(1)若,求函数的单调递增区间;(2)若,函数处取得极值,且,求证:向量与向量不可能垂直;(3)若函数的导函数满足:当时,有恒成立,求函数的解析式。

查看答案和解析>>

已知函数
(1)当  时,求函数  的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。

查看答案和解析>>

已知函数
(1)当  时,求函数  的最小值;
(2)当 时,求证:无论取何值,直线均不可能与函数相切;
(3)是否存在实数,对任意的 ,且,有恒成立,若存在求出的取值范围,若不存在,说明理由。

查看答案和解析>>

已知函数

(1)求函数的定义域;

(2)求函数在区间上的最小值;

(3)已知,命题p:关于x的不等式对函数的定义域上的任意恒成立;命题q:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.

【解析】第一问中,利用由 即

第二问中,得:

第三问中,由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时;当命题p为假,命题q为真时分为两种情况讨论即可 。

解:(1)由 即

(2)得:

(3)由在函数的定义域上 的任意,当且仅当时等号成立。当命题p为真时,;而命题q为真时:指数函数.因为“p或q”为真,“p且q”为假,所以

当命题p为真,命题q为假时,

当命题p为假,命题q为真时,

所以

 

查看答案和解析>>

(本题16分)已知函数,其中e是自然数的底数,

(1)当时,解不等式

(2)若当时,不等式恒成立,求a的取值范围;

(3)当时,试判断:是否存在整数k,使得方程

   上有解?若存在,请写出所有可能的k的值;若不存在,说明理由。

 

查看答案和解析>>


同步练习册答案